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Abstract

This study considers universal oscillator fuzzy differential equations. The differential inclusion method is applied to this problem 
by considering the universal oscillator fuzzy differential equations as universal oscillator uncertain dynamical systems. Three types 
of damped oscillators are considered comprising underdamped, critically damped, and overdamped oscillators. The existence and 
uniqueness of the solutions to each case are discussed and proofs are given under some certain conditions. For universal oscillator 
uncertain dynamical systems with an undamped forcing function, the existence and uniqueness of the solutions and big solutions 
are also verified, while the scopes of the trajectories to the solutions are obtained based on the inclusion relationship between 
solutions and big solutions. We also prove the existence and uniqueness of solutions to universal oscillator uncertain dynamical 
systems with a damped forcing function by using other more direct conditions.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy differential equations (FDEs) are used widely to study mathematical models with uncertainty or subjective 
information. Buckley et al. [5] studied first order FDEs. Chen et al. [12] and Khastan et al. [19] investigated the 
boundary value problem for second order FDEs. Fractional and higher order FDEs were discussed in previous studies 
[2,16]. In the present study, we consider the following universal oscillator FDE:

x′′ + 2rx′ + k2x = f (t, x, x′) (where t ∈ I ⊂ R, r ≥ 0, k, r ∈ R, f : I × Ec × Ec → Ec),

with three types of two-point boundary constraints for different relationships between k and r .
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There are three main ways of dealing with FDEs: Zadeh’s extension principle (see [6,7,23,24]), H-derivatives and 
Bede’s generalized derivatives (see [2,3,8,12,15,16,19,21,22]), and differential inclusions (see [1,9–11,13,14,17,18,
20]). In previous studies [5,9,11], different basic theories were presented for these three approaches. The H-derivatives 
approach is used widely to study FDEs but it also has obvious defects. In particular, Diamond and Watson [13]
showed that H-derivatives cannot reflect the periodicity, stability, and bifurcation behaviors of FDEs because of the 
nondecreasing support sets of the fuzzy solutions, although the differential inclusion method can overcome these 
limitations. For example, the simplest fuzzy two-point boundary value problem comprising: x ′′ = (−1) ⊗ x, x(0) =
x(π/2) = A (where x : [0, π/2] → Ec , A ∈ Ec and [A]α = [α, 2 − α], and “⊗” is the operation of product based on 
Zadeh’s extension principle), has no solutions using H-derivatives according to reference [4] and Theorem 4.1 in [12], 
but it can be solved by the differential inclusion method (see [20]).

Thus, the periodic behavior of semi-linear FDEs and the two-point boundary value problems of FDEs can be 
successfully solved by using the differential inclusion method (see [9,11,14,20]). In addition, the differential inclusion 
method is also effective for handling the universal oscillator FDE given above with different two-point boundary 
constraints. Similar to previous studies [9,11,13,17,20,27], we also treat universal oscillator FDEs as the corresponding 
universal oscillator uncertain dynamical systems, i.e.,

ξ ′′ + 2rξ ′ + k2ξ ∈ f (t, ξ, ξ ′),

where t ∈ I ⊂ R, r ≥ 0, k, r ∈ R, f : I × R × R → Ec, with different two-point boundary constraints. In the 
uncertain dynamical systems given above, for ξ ∈ R, u ∈ Ec, ξ ∈ u means that u(ξ) = μu(ξ) > 0, where μu is the 
membership function of u. The different relationships between r and k can lead to different types of damped uncertain 
dynamical systems: underdamped, critically damped, and overdamped. These three cases are studied using different 
Green functions and boundary constraints.

For uncertain dynamical systems, we give definitions of their solutions, as well as proving the existence and unique-
ness of their solutions. For uncertain dynamical systems with an undamped forcing function, we provide definitions of 
their solutions and big solutions, as well as verifying the existence and uniqueness of their solutions and big solutions. 
The scopes of the trajectories for the solutions are obtained by controlling the big solutions. The more direct con-
ditions for proving the existence and uniqueness of solutions for uncertain dynamical systems with damped forcing 
function are presented.

The remainder of this paper is organized as follows. Section 2 provides the basic relevant background information 
for this study. In Section 3, we consider underdamped, critically damped, and overdamped uncertain dynamical sys-
tems. For each case, a special type of uncertain dynamical system is investigated. In Section 4, we give our conclusion.

2. Preliminaries

The concepts of fuzzy numbers and relative derivatives for fuzzy number valued functions are explained in this 
section. In addition, we present some basic properties and theories that are used in this study. Their proofs can be 
found in previous studies [9–12].

2.1. New parametric representation for fuzzy number valued functions

In this study, the fuzzy space considered is Ec. Before introducing the definition and properties of Ec, we give the 
following definition and theorem, which are used to obtain the definition of Ec and to solve the universal oscillator 
FDEs.

Definition 2.1.1. [13] Let D1 be the set of upper semicontinuous normal fuzzy sets with compact supports in R and 
E1 are the set of fuzzy convex subsets of D1.

Theorem 2.1.1. [Stacking Theorem] [13] Let {Aα ⊂ R| 0 ≤ α ≤ 1} be a class of nonempty compact sets that satisfy:

(i) Aβ ⊂ Aα (0 ≤ α ≤ β ≤ 1),

(ii) Aα =
∞⋂

n=1
Aαn for any nondecreasing sequence {αn} in [0, 1] that satisfies αn → α.
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