

In 1960, the triangular norms (t-norms) and triangular conorms (t-conorms) were first introduced by Schweizer and Sklar in [26]. Subsequently, they have been used in many applications in the areas of fuzzy set theory and fuzzy logic. The concepts of a nullnorm and t-operator were introduced by [20] and [5], respectively. The equivalence of nullnorms and t-operators was stated by [21].

In [23], a natural order for semigroups was defined. Similarly, in [15], a partial order defined by the means of t-norms on a bounded lattice was introduced. This partial order is called a T-partial order on a bounded lattice.

An order induced by a nullnorm on a bounded lattice was defined by [1]. In addition, the set of incomparable elements with respect to the *F*-partial order for any nullnorm on [0, 1] was defined, which is called K_F . Nullnorms and t-norms have also been investigated in many studies by [2,3,7–9,12,13,18–22,27].

In the present study, we investigate some properties of an order induced by nullnorms, called the *F*-partial order. The remainder of this paper is organized as follows. In Section 2, some basic notions are presented in brief. In Section 3, we define the set $\mathcal{I}_F^{(x)}$, which denotes the set of all incomparable elements with arbitrary but fixed $x \in (0, 1)$ according to the *F*-partial order, and we investigate some properties of this set. In Section 4, we define an equivalence

E-mail address: emelkalin@hotmail.com.

⁵⁰ https://doi.org/10.1016/j.fss.2017.11.008

 ⁵¹ 0165-0114/© 2017 Published by Elsevier B.V.
⁵²

Please cite this article in press as: E. Aşıcı, On the properties of the *F*-partial order and the equivalence of nullnorms, Fuzzy Sets Syst. (2017), https://doi.org/10.1016/j.fss.2017.11.008

JID:FSS AID:7325 /FLA

E. Aşıcı / Fuzzy Sets and Systems ••• (••••) •••-•••

PRESS

ART

1	on the class of nullnorms on the unit interval [0, 1] based on the equality of the their partial orders. We also determine	1
2	the equivalence classes of the smallest and greatest nullnorms on [0, 1]. Next, we introduce the concept of a conjugate	2
3	of a nullnorm and we present the sufficient and necessary condition such that a nullnorm and its conjugate nullnorm	3
4	are equivalent. In [1], the following open problem was posed. Given an $(a, b) \subseteq (0, 1)$, can we find a nullnorm F on the unit interval [0, 1] such that $K_{a,c}(a, b) \ge 1$. Section 5 we provide an encoded to this open problem.	4
5 6	the unit interval [0, 1] such that $K_F = (a, b)$? In Section 5, we provide an answer to this open problem.	5 6
7	2. Preliminaries	7
8		8
9	To ensure that this study is self-contained, we first recall some concepts and results that are used in the following.	9
10		10
11	Definition 1. [25] Let $(L, \leq, 0, 1)$ be a bounded lattice. A <i>triangular norm</i> T (t-norm) is a binary operation on L that	11
12	is commutative, associative, monotone, and has neutral element 1.	12
13	Example 1. [17] The four basic t-norms T_M , T_P , T_L , and T_D on [0, 1] are given by:	13
14 15	$T_{\mathcal{M}}(x, y) = \min(x, y),$	14 15
16		16
17	$T_P(x, y) = xy,$	17
18	$T_L(x, y) = \max(x + y - 1, 0),$	18
19	$\begin{cases} 0 & \text{if } (x, y) \in [0, 1)^2 \end{cases}$	19
20	$T_D(x, y) = \begin{cases} 0 & \text{if } (x, y) \in [0, 1)^2 ,\\ \min(x, y), & \text{otherwise.} \end{cases}$	20
21		21
22	Definition 2. [25] Let $(L, \leq, 0, 1)$ be a bounded lattice. A <i>t</i> -conorm S is a binary operation on L that is commutative,	22
23 24	associative, monotone, and has neutral element 0.	23 24
24 25		24 25
26	Example 2. [17] The four basic t-conorms S_M , S_P , S_L , and S_D on [0, 1] are given by:	26
27	$S_M(x, y) = \max(x, y),$	27
28	$S_P(x, y) = x + y - xy,$	28
29	$S_L(x, y) = \min(x + y, 1),$	29
30		30
31	$S_D(x, y) = \begin{cases} 1 & \text{if } (x, y) \in (0, 1]^2, \\ \max(x, y), & \text{otherwise.} \end{cases}$	31
32 33	$\max(x, y)$, otherwise.	32 33
34	The extremal t-norms T_{\wedge} and T_W on L are defined as follows:	34
35		35
36	$T_{\wedge}(x, y) = x \wedge y$	36
37	x if y = 1,	37
38	$T_W(x, y) = \begin{cases} y & \text{if } x = 1, \end{cases}$	38
39	$T_{\wedge}(x, y) = x \wedge y$ $T_{W}(x, y) = \begin{cases} x & \text{if } y = 1, \\ y & \text{if } x = 1, \\ 0 & \text{otherwise.} \end{cases}$	39
40	Similarly, the t-conorms S_{\vee} and S_W can be defined as above.	40
41 42	In particular, we have $T_W = T_D$ and $T_{\wedge} = T_M$ for $L = [0, 1]$.	41 42
43		43
44	Example 3. [17] The t-norm T^{nM} on [0, 1] is defined as follows:	44
45	$\int 0 \qquad x+y < 1$	45
46	$T^{nM}(x, y) = \begin{cases} 0 & x + y \le 1 \\ \min(x, y) & \text{otherwise.} \end{cases}$	46
47	Ϋ́Υ,	47
48	$T^n M$ is called the nilpotent minimum t-norm. That norm T^* on [0, 1] is defined as follows:	48
49 50	The t-norm T^* on [0, 1] is defined as follows:	49
50 51	$T^*(x, y) = \begin{cases} 0 & (x, y) \in (0, k)^2 ,\\ \min(x, y) & \text{otherwise,} \end{cases} \qquad 0 < k < 1.$	50 51
52	$\min(x, y) = \min(x, y) \text{ otherwise,} \qquad 0 < k < 1.$	52
	· ·	

Please cite this article in press as: E. Aşıcı, On the properties of the F-partial order and the equivalence of nullnorms, Fuzzy Sets Syst. (2017), https://doi.org/10.1016/j.fss.2017.11.008

Download English Version:

https://daneshyari.com/en/article/6855795

Download Persian Version:

https://daneshyari.com/article/6855795

Daneshyari.com