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Abstract

We define meager projections on homogeneous effect algebras and discuss their properties. As an application, we prove that, if 
E is an orthocomplete homogeneous effect algebra such that S(E) is lattice-ordered, then E is a lattice effect algebra, which gives 
an affirmative answer to an open problem stated by Mesiar and Stupňanová.
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1. Introduction

In the nineties of the twentieth century, two equivalent quantum structures, D-posets [13] and effect algebras [3]
were extensively studied, which were considered as “unsharp” generalizations of the structures which arise in quan-
tum mechanics (orthomodular lattices, orthomodular posets, orthoalgebras) incorporating some fuzzy logics (MV-
algebras).

Effect algebras are partially ordered by a natural way, and if they are lattices then they are called lattice effect 
algebras. The set of all sharp elements of a lattice effect algebra E is an orthomodular lattice, being a sub-effect 
algebra and a sublattice of E [7]. In [8], a new class of effect algebras, called homogeneous effect algebras, was 
introduced. The class of homogeneous effect algebras includes orthoalgebras, effect algebras satisfying the Riesz 
decomposition property and lattice effect algebras. The set of all sharp elements of a homogeneous effect algebra is 
its sub-effect algebra [8].

Below we present Problem 10.1 from [14], which was posed by Jenča during The Twelfth International Conference 
on Fuzzy Set Theory and Applications 2014.

Problem 1.1. ([14]) Prove or disprove: If E is an orthocomplete homogeneous effect algebra such that S(E) is lattice-
ordered, then E is a lattice effect algebra.

In this paper, we give an affirmative answer to this problem using the properties related to meager projections on 
orthocomplete homogeneous effect algebras.
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2. Preliminaries and basic facts

Effect algebras have been introduced by Foulis and Bennett to study the foundations of quantum mechanics [3]. 
An effect algebra is a partial algebra (E; ⊕, 0, 1) with a binary partial operation ⊕ and two nullary operations 0, 1, 
satisfying the following conditions for any x, y, z ∈ E:

(E1) if x ⊕ y is defined, then y ⊕ x is defined and x ⊕ y = y ⊕ x,
(E2) if x ⊕ y and (x ⊕ y) ⊕ z are defined, then y ⊕ z and x ⊕ (y ⊕ z) are defined and (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z),
(E3) for every x ∈ E there is a unique x′ ∈ E such that x ⊕ x′ exists and x ⊕ x′ = 1,
(E4) if x ⊕ 1 is defined, then x = 0.

We often denote the effect algebra (E; ⊕, 0, 1) briefly by E. For any element x in an effect algebra, the element x ′
in (E3) is equal to 1 � x and called the orthosupplement of x. The unary operation ′ : E → E is involutive and order 
reversing. In every effect algebra we can define the partial operation � and the partial order ≤ by putting x ≤ y and 
y � x = z if and only if x ⊕ z is defined and x ⊕ z = y. The partial operations ⊕ and � are connected by the rules 
a ⊕ b = (a′ � b)′ and a � b = (a′ ⊕ b)′.

If E is an effect algebra such that (E; ≤) is lattice-ordered, then we say that E is a lattice effect algebra. An or-
thogonality relation on E is defined by x ⊥ y if and only if x ⊕ y is defined. It can be proved that x ⊥ y if and only if 
x ≤ y′, if and only if y ≤ x′. For convenience, when we write x ⊕ y, we mean that x ⊕ y is defined. If x, y in E are 
such that x ≤ y′ and x ∨ y exists, then x ∧ y exists and x ⊕ y = (x ∨ y) ⊕ (x ∧ y) [5]. In particular, x ∨ y ≤ x ⊕ y and 
the equality is valid if and only if x ∧ y = 0 [19]. We refer to [1] for more information on effect algebras and related 
topics.

Elements x, y ∈ E are disjoint if and only if x ∧y = 0. An effect algebra E satisfying x ⊥ x ⇒ x = 0, equivalently, 
x ∧ x′ = 0 for all x ∈ E, is an orthoalgebra [1,2]. An effect algebra E is an orthomodular poset if and only if for all 
x, y ∈ E, x ⊥ y ⇒ x ∧ y = 0. We note that conversely, an orthomodular poset can be made an effect algebra by defin-
ing the ⊕-operation as the supremum of orthogonal elements. Clearly, an orthomodular poset is an orthoalgebra [17]. 
A lattice effect algebra is an MV-effect algebra if and only if x ∧ y = 0 ⇒ x ⊥ y.

For any x ∈ E, let E[0, x] = {y | y ≤ x and y ∈ E}. The interval E[0, x] can be made an effect algebra if we restrict 
the operation ⊕ letting x act as the unit element. Thus, for y, z ∈ E[0, x], y ⊕x z is defined and y ⊕x z := y ⊕ z if and 
only if y ⊕ z exists in E and y ⊕ z ≤ x. Similarly, for y, z ∈ E[0, x], y ∧x z is defined and y ∧x z := y ∧ z if and only 
if y ∧ z exists in E.

Recall that Q ⊆ E is called a sub-effect algebra of E if and only if

(i) 1 ∈ Q,
(ii) if out of elements x, y, z ∈ E with x ⊕ y = z two are in Q, then x, y, z ∈ Q.

Note that if Q is a sub-effect algebra of E then Q with inherited operation ⊕ is an effect algebra in its own right.
An element s ∈ E is called a sharp element of an effect algebra E if s ∧ s′ = 0 [6]. The set of all sharp elements 

of E is denoted by S(E). It has been shown that in every lattice effect algebra E the set S(E) is an orthomodular 
lattice, being a sub-effect algebra and a sublattice of E [7]. An element p ∈ E is principal if for x, y ∈ E, x ⊥ y and 
x, y ≤ p imply x ⊕ y ≤ p [5]. An element z ∈ E is central if for every x ∈ E, (x ∧ z) ⊕ (x ∧ z′) = x [5]. The center 
C(E) is the set of all central elements in E. In every effect algebra, every principal element is sharp and every central 
element is principal.

An effect algebra satisfies the Riesz decomposition property (RDP) if, for x1, x2, y1, y2 ∈ E, x1 ⊕ x2 = y1 ⊕ y2
implies the existence of zij ∈ E, such that xi = zi1 ⊕ zi2 and yj = z1j ⊕ z2j for all i, j ∈ {1, 2} [1]. Alternatively, E
has the Riesz decomposition property if and only if x ≤ y1 ⊕ y2 implies there exist x1, x2 ∈ E, such that x = x1 ⊕ x2, 
x1 ≤ y1 and x2 ≤ y2. If E is an effect algebra E satisfying the Riesz decomposition property and x ∈ E, then x is 
central if and only if x is principal, if and only if x is sharp [8]. An effect algebra is an MV-effect algebra if and only 
if it is lattice ordered and has the RDP [1].

We say that a finite system F = (xk)
n
k=1 of not necessarily different elements of an effect algebra E is orthogonal if 

x1 ⊕x2 ⊕· · ·⊕xn (written 
n⊕

k=1
xk or 

⊕
F ) exists in E. Here we define x1 ⊕x2 ⊕· · ·⊕xn = (x1 ⊕x2 ⊕· · ·⊕xn−1) ⊕xn
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