ScienceDirect
sets and systems dimensions
(1) $C_{n}(\mathbf{x})=0$ if \mathbf{x} is such that $x_{i}=0$ for some $i \in\{1,2, \ldots, n\}$.
(2) $C_{n}(\mathbf{x})=x_{i}$ if \mathbf{x} is such that $x_{j}=1$ for all $i \neq j$.
(3) C_{n} is n-increasing, i.e., for any n-box $\mathbf{P}=X_{i=1}^{n}\left[a_{i}, b_{i}\right] \subseteq[0,1]^{n}$ it holds that

$$
V_{C_{n}}(\mathbf{P})=\sum_{\mathbf{x} \in \operatorname{vertices}(\mathbf{P})}(-1)^{S(\mathbf{x})} C_{n}(\mathbf{x}) \geq 0
$$

where $S(\mathbf{x})=\#\left\{i \in\{1,2, \ldots, n\} \mid x_{i}=a_{i}\right\}$.
$V_{C_{n}}(P)$ is called the C_{n}-volume of P.

Remark 1. When $n-k$ of the arguments of an n-copula are set equal to 1 , we obtain a k-dimensional marginal of the n-copula, which itself is a k-copula.

For a given n-copula C_{n}, \hat{C}_{n} denotes the associated survival n-copula, and is given by

$$
\begin{align*}
\hat{C}_{n}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{i=1}^{n} x_{i}-(n-1)+\sum_{i<j}^{n} C_{n}\left(1, \ldots, 1-x_{i}, \ldots, 1-x_{j}, \ldots, 1\right) \\
& -\sum_{i<j<k}^{n} C_{n}\left(1, \ldots, 1-x_{i}, \ldots, 1-x_{j}, \ldots 1-x_{k}, \ldots, 1\right)+\ldots \\
& +(-1)^{n} C_{n}\left(1-x_{1}, 1-x_{2}, \ldots, 1-x_{n}\right) \tag{1}
\end{align*}
$$

Survival copulas have a clear probabilistic interpretation: if the random vector $\left(U_{1}, \ldots U_{n}\right)$ has the copula C_{n} as its joint distribution function, then \hat{C}_{n} is the joint distribution function of the random vector $\left(1-U_{1}, \ldots, 1-U_{n}\right)$. This probabilistic interpretation has led to several studies of the transformations of copulas that are induced by certain types of transformations on random variables [16,17,26]. These transformations have been generalized and studied in the framework of aggregation functions. For example, such transformations were studied in [7,9] for bivariate aggregation functions, while a specific transformation was studied in [11] for higher dimensions.

Due to Sklar's theorem, which states that any continuous multivariate distribution function can be written in terms of its n univariate marginals by means of a unique n-copula, n-copulas have become one of the most important tools for the study of certain types of properties of random vectors, such as stochastic dependence (see [14,35] for more details on n-copulas).

As mentioned before, an example of a property that can be directly studied using copulas is the property of radial symmetry. It can be easily shown that a continuous random vector (X_{1}, \ldots, X_{n}) is radially symmetric about $\left(a_{1}, \ldots, a_{n}\right)$ if and only if, for any $j \in\{1, \ldots, n\}, X_{j}-a_{j}$ has the same distribution as $a_{j}-X_{j}$, and $C_{n}=\hat{C}_{n}$, where C_{n} is the copula associated to the random vector $\left(X_{1}, \ldots, X_{n}\right)$. Due to this characterization, we say that an n-copula C_{n} is radially symmetric if it satisfies the identity $C_{n}=\hat{C}_{n}$. Clearly, radial symmetry of an n-copula implies the radial symmetry of its lower dimensional marginals, however, the converse statement is not true.

It is important to remark that the concept of radial symmetry of an n-copula is different from the concept of symmetry. Symmetric copulas are the copulas associated to exchangeable random variables. Formally, we say that an n-copula C_{n} is symmetric if for any permutation σ of $\{1,2, \ldots, n\}$ and for any $\mathbf{x} \in[0,1]^{n}$ it holds that

$$
C_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=C_{n}\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right) .
$$

Note that if an n-copula is symmetric, all of its k-dimensional marginals coincide for any $k \in\{2, \ldots n-1\}$.
Radially symmetric copulas have a particular importance in stochastic simulation and statistics, as they can be used, in certain situations, in the multivariate version of the antithetic variates method, which is a variance reduction technique used in Monte Carlo methods [29]. Additionally, there has also been a growing interest in developing statistical tests for testing the presence of radial symmetry [1,3,10,18,22,38,41].

In the bivariate case, well-known examples of families of copulas that are radially symmetric are the Frank family and the Farlie-Gumbel-Morgenstern (FGM) family [35]. However, there are only a few families of n-copulas that are radially symmetric for $n \geq 3$, elliptical copulas being the best known [29].

https://daneshyari.com/en/article/6855960

Download Persian Version:

https://daneshyari.com/article/6855960

Daneshyari.com

