

Please cite this article in press as: E. Esmi et al., A parametrized sum of fuzzy numbers with applications to fuzzy initial value problems, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.05.017

2 *E. Esmi et al. / Fuzzy Sets and Systems* ••• *(*••••*)* •••*–*•••

ARTICI F IN PRFS

¹ established conditions for the addition by means of sup-J extension principle to coincides with the usual sum of fuzzy ² numbers, that is, the sum based on Zadeh's extension principle [\[4\].](#page--1-0)

³ In this paper, we propose a new parametrized family of joint possibility distributions for a given pair of fuzzy 4 4 numbers. The (Pompeiu–Hausdorff) norms of the respective sup-J extensions of the sum can be adjusted by modifying ⁵ the parameter. This paper proves that the norms cover the entire interval ranging from the smallest possible value to the ⁶ largest one. Finally, we apply our approach to numerical methods for solving first-order fuzzy initial value problems. ⁶

⁷ In this context recall, that the widths and thus the norms of the analytical solutions, which depend on the choice ⁷ 8 of the fuzzy derivative, at *t* of many fuzzy differential equations such as decay processes tend to zero for $t \to \infty$ $9\quad [10-13]$. Note that numerical methods for solving fuzzy initial value problems based on the widely used Runge–Kutta ¹⁰ numerical method involve additions. On the one hand, employing the usual addition based on Zadeh's extension ¹⁰ ¹¹ for this purpose causes a rapid growth of the widths and the norms of the numerical solution at *t* for $t \to \infty$. This ¹¹ ¹² phenomenon may not reflect the qualitative behavior of the analytical solution. On the other hand, this effect may ¹² ¹³ be mitigated by using an addition based on the sup-J extension principle with a suitable joint possibility distribution. ¹³ ¹⁴ This problem motivated us to devise the aforementioned parametrized approach towards adding fuzzy numbers that ¹⁴ ¹⁵ allows for controlling the Pompeiu–Hausdorff norm of the resulting sum. This way, one is able to produce a numerical ¹⁵ ¹⁶ solution whose norm can be adjusted as desired. Note that the width of a fuzzy number *A* is bounded from above by ¹⁷ 2||A|| and therefore one can obtain control over *width*(*A*) by tuning the Pompeiu–Hausdorff norm of *A*.

¹⁸ The paper is organized as follows. Section 2 provides some mathematical background. Section [3](#page--1-0) reviews some ap-¹⁹ proaches towards adding fuzzy numbers using the sup-J extension principle. Section [4](#page--1-0) introduces a new parametrized¹⁹ ²⁰ family of sup-J extensions of the sum whose norms are increasing with respect to the parameter γ . We present some ²¹ applications to fuzzy initial value problems in Section [5](#page--1-0) and finish with some concluding remarks in Section [6.](#page--1-0) The 21 22 proofs of the theorems and lemmas are contained in the appendix. 23 23

24 24 25 25 \ldots matrix matrix 25 **2. Mathematical background**

27 A fuzzy (sub)set *A* over a universe of discourse *X* is determined by its membership function $\mu_A : X \to [0, 1]$ where 27 28 $\mu_A(x)$ represents the membership degree of *x* in *A* [\[14,15\].](#page--1-0) For notational convenience, we simply write $A(x)$ instead 28 of $\mu_A(x)$ for all $x \in X$. The symbol $\mathcal{F}(X)$ denotes the class of fuzzy sets over the universe *X*. The class of fuzzy sets our 30 extend the power set of *X*, denoted by $\mathcal{P}(X)$, since every subset *Y* of *X* is uniquely determined by its characteristic 30 31 function χ_Y . 31

32 For any pair of partially ordered sets L and M, a function $f : \mathbb{L} \to \mathbb{M}$ is called increasing if $x \le y \in \mathbb{L}$ implies that 32 33 $f(x) \le f(y) \in M$. Similarly, *f* is called decreasing if $x \le y$ implies that $f(y) \le f(x)$.

 34 Recall that $F(X)$ together with the operators of infimum and supremum given by the intersection and union op-
 34 ³⁵ erators of fuzzy sets represents a complete lattice, that is, a partially ordered set that contains the infimum as well as ³⁵ ³⁶ the supremum of every subset [\[16\].](#page--1-0) From another point of view, one perceives that the complete lattice structure of ³⁶ $\mathcal{F}(X)$ is induced by the complete lattice structure of the totally ordered set [0, 1] [\[17\].](#page--1-0) If *M* is a subset of an arbitrary ³⁷ 38 complete lattice \mathbb{L} , then the symbols $\bigwedge M$ and $\bigvee M$ denote respectively the infimum and the supremum of M. One ³⁸ 39 also writes 0_L instead of $\bigwedge L$ and 1_L instead of $\bigvee L$. Note that $\bigvee \emptyset = 0_L$ and $\bigwedge \emptyset = 1_L$ in an arbitrary complete ³⁹ 40 lattice L. In particular, we will make use of the fact that $\sqrt{\emptyset} = 0$ if $\mathbb{L} = [0, 1]$.

41 41 Operators of fuzzy logic arises from the generalization of operators of Boolean logic to the unit interval [0*,* 1]. Here, ⁴² we will only employ the extensions of the "and" operator known as t -norms. Mathematically speaking, a t-norm is a 42 43 commutative, associative, and increasing function $t:[0,1]^2 \to [0,1]$ with identity element 1. The minimum operator 43 ⁴⁴ (that corresponds to the infimum of a two-element set) and the drastic t-norms, denoted respectively by the symbols ⁴⁴ ⁴⁵ ∧ and *t_D*, constitute well-known examples of t-norms. Recall that the drastic t-norm is given for all *a*, *b* ∈ [0, 1] by ⁴⁵

$$
a t_D b = \begin{cases} a \wedge b, & \text{if } a = 1 \text{ or } b = 1, \\ 0, & \text{otherwise.} \end{cases} \tag{48}
$$

50 A fuzzy relation between arbitrary sets *X* and *Y* is given by a fuzzy set over the universe $X \times Y$, that is, a function 50 51 $R: X \times Y \to [0, 1]$. The value $R(x, y)$ can be interpreted as the degree of relationship between *x* and *y* for $(x, y) \in [5, 1]$ 52 $X \times Y$ [\[18\].](#page--1-0) A fuzzy set *R* over a universe of the form $X = X_1 \times \ldots \times X_n$ can be interpreted as a (n-ary) fuzzy relation 52

49 49

Download English Version:

<https://daneshyari.com/en/article/6856028>

Download Persian Version:

<https://daneshyari.com/article/6856028>

[Daneshyari.com](https://daneshyari.com)