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Abstract

In this work we state a number of theorems about fuzzy (quasi-)pseudometrizable algebraic structures. Our most useful results
are: (1) a fuzzy semitopological group whose topology is induced by a left-invariant fuzzy (quasi-)pseudometric, then it is a fuzzy
(paratopological) topological group, (2) if the topology on a semigroup S is induced by an invariant fuzzy quasi-pseudometric,
then S is a fuzzy topological semigroup, and (3) the same conclusion is valid for a left-invariant fuzzy quasi-pseudometric on a
monoid G such that the left translations are open and the right translations are continuous at the identity e of G. By means of the
standard fuzzy (quasi-)pseudometric M, associated to a (quasi-)pseudometric d, our results apply in the case of semitopological
groups, semigroups and monoids in order to obtain new results that allow us to generalize and to strengthen previous outcomes.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we shall focus our attention on topological algebraic structures equipped with a fuzzy quasi-
pseudometric in the sense of Kramosil and Michalek. Combinations of a fuzzy metric structure and an algebraic
structure deserve special attention in fuzzy Topological Algebra. The most frequently studied structures fall into the
so-called fuzzy normed spaces (among others, the interested reader can consult [2,4,15,16]), although fuzzy metric
topological groups are also worthy of consideration (see [11,19,20]). In [8] Gregori and Romaguera remove the sym-
metric condition in the definition of a fuzzy metric (in the sense of Kramosil and Michalek, see [14]) and introduce
the notion of a fuzzy quasi-metric space. This allows us to consider nonsymmetric structures which fit in the realm of
fuzzy nonsymmetric topology: fuzzy quasi-metric spaces and fuzzy quasi-normed spaces ([1,5,7,10]). In this context,
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the classical results in semigroups and paratopological groups related to (left-)invariant metrics (see, for example, [17,
Theorem 2.1], [18, Proposition 3.2]) encourage enough to merit further investigation in fuzzy nonsymmetric topology.

In this paper we deal with one of the oldest problems in Topological Algebra: find sufficient conditions in order
that a topological algebraic structure (in particular a nonsymmetric structure) become a stronger topological structure
(in particular, a symmetric structure). Our goal is to obtain conditions on fuzzy quasi-metrics (respectively, fuzzy
quasi-pseudometrics) semitopological groups and fuzzy paratopological groups (respectively, on fuzzy topological
semigroups) which imply that they are either fuzzy paratopological groups or topological groups.

To be precise, we show the following: (1) if (G, M, %) is a fuzzy semitopological group whose topology tj/ is
induced by a left-invariant fuzzy (quasi-)pseudometric M, then (G, M, %) is a fuzzy (paratopological) topological
group, (2) if (M, x) is an invariant fuzzy quasi-pseudometric on a semigroup S, then (S, M, ) is a fuzzy topological
semigroup, and (3) the same conclusion is valid when (M, ) is a left-invariant fuzzy quasi-pseudometric on a monoid
G such that the left translations are open and the right translations are continuous at the identity e of G. It is worth
mentioning that, by means of the standard fuzzy (quasi-)pseudometric M, associated to a (quasi-)pseudometric d, our
results apply in the case of semitopological groups, semigroups and monoids in order to obtain new results that allow
us to generalize and to strengthen previous outcomes by Liu [17, Theorem 2.1] and Ravsky [ 18, Proposition 3.2].

A celebrated theorem by Birkhoff—Kakutani says that a Hausdorff topological group is metrizable if and only if it is
first-countable. It is also a well-known result that a first-countable paratopological group is quasi-metrizable (see [18]).
In spite of these results, a first-countable topological semigroup need not be quasi-pseudometrizable (see [12]).

2. Preliminaries

According to [21], a continuous t-norm is a binary operation * : [0, 1] x [0, 1] — [0, 1] which satisfies the following
conditions: (i) * is associative and commutative, (ii) * is continuous, (iii) a x 1 = a forevery a € [0, 1], and (iv) a b <
¢ *d whenevera <cand b <d, witha, b, c,d €0, 1].

It is a well-known fact, and easy to check, that for each continuous t-norm * one has % < A, where A is the
continuous t-norm given by a A b = min{a, b}. The interested reader is referred to [13] for further information on
(continuous) t-norms.

Following [8], a fuzzy quasi-pseudometric (in the sense of Kramosil and Michalek) on a set X is a pair (M, *) such
that M is a fuzzy setin X x X x [0, co) and * is a continuous t-norm satisfying for all x, y,z € X and #, s > O:

(i M(x,y,0)=0;
() M(x,x,t)=1;
(i) M(x,z,t+s)=>M(x,y,t) * M(y,z,5);
@iv) M(x,y,_): [0,400) — [0, 1] is left continuous.

A fuzzy pseudometric on X is a fuzzy quasi-pseudometric (M, *) on X which satisfies:
V) M(x,y,t)=M(y,x,t)forall x,y € X and ¢ > 0.

By a fuzzy (quasi-)pseudometric space (in the sense of Kramosil and Michalek) we mean a triple (X, M, %) such
that X is a set and (M, x) is a fuzzy (quasi-)pseudometric on X. Every fuzzy (quasi)-pseudometric (M, *) on a
set X induces a topology t) on X having as a base the family {By(x,¢,7) : x € X, ¢ € (0,1), ¢t > 0}, where
By(x,e,t)={yeX:Mx,y,t)>1—¢}forallx € X,e € (0,1)and 7 > 0.

Let (X, d) be a (quasi-)pseudometric space. Define a fuzzy set My in X x X x [0, 00) by

t

Mg(x,y,1)=1 t+d(x,y)
0 forallx,ye X and ¢t =0.

forallx,ye X and ¢t > O;

Then (M4, A) is a fuzzy (quasi-)pseudometric on X, and hence (Mg, *) is a fuzzy quasi-pseudometric on X for all
continuous t-norm *, the so-called (fixed a t-norm * on X), the standard fuzzy (quasi-)pseudometric induced by d
on X. It is known that the topology t)s and the topology t4, induced by the (quasi-)pseudometric d, coincide (see
[6,3,9]).
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