

Available online at www.sciencedirect.com

FSS:7163

Fuzzy Sets and Systems ••• (••••) •••-•••

www.elsevier.com/locate/fss

Stratified *LMN*-convergence tower groups and their stratified *LMN*-uniform convergence tower structures

T.M.G. Ahsanullah^{a,*}, Gunther Jäger^b

^a Department of Mathematics, King Saud University, Riyadh, Saudi Arabia ^b School of Mechanical Engineering, University of Applied Sciences Stralsund, 18435 Stralsund, Germany

Received 31 March 2016; received in revised form 18 January 2017; accepted 19 January 2017

This article is dedicated to Professor Robert Lowen on his 70th birthday

Abstract

If L and M are frames, and N is a quantale, then using stratification mappings between frames, we introduce a category of stratified LMN-convergence tower groups – a topological category. We then prove that every stratified LMN-limit tower group induces a stratified LMN-uniform convergence tower space. Also, we introduce a category of stratified LMN-Cauchy tower groups, and show that the category of strongly normal stratified LMN-limit tower groups, is isomorphic to the category of stratified LMN-Cauchy tower groups. We provide various examples in support of our theories so far developed herein the text. © 2017 Elsevier B.V. All rights reserved.

Keywords: Quantale; Topology; Convergence space; Convergence group; Convergence tower group; Cauchy convergence group; Uniform convergence space; Category theory

1. Introduction

Starting with a fixed basis lattice, a frame and later, with an enriched *cl*-premonoid [22], we studied various convergence structures on groups, obtaining several interesting results on the category of stratified lattice-valued convergence groups [3,4] and probabilistic convergence groups [7,32]. In doing so, we used the notion of a stratified framed-valued fuzzy convergence structure studied by G. Jäger [23,40] that arose from the notion of stratified lattice-valued filters defined by Höhle and Šostak [22]; also, using probabilistic convergence structure that arises from [27,45,49].

Very recently, G. Jäger [28,29] (see also [52]) proposed a *stratification mapping between frames* to help build so-called *s*-stratified *LMN*-convergence tower structures, *L*, *M* being frames, and *N* being a complete lattice or a quantale; this *stratification mapping* along with some additional conditions plays a crucial role in many instances. One of the striking aspects of this theory of *s*-stratified *LMN*-convergence tower spaces is that it captures various con-

* Corresponding author. Fax: +966 11 4676512.

http://dx.doi.org/10.1016/j.fss.2017.01.011 0165-0114/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: T.M.G. Ahsanullah, G. Jäger, Stratified *LMN*-convergence tower groups and their stratified *LMN*-uniform convergence tower structures, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.011

E-mail addresses: tmga1@ksu.edu.sa (T.M.G. Ahsanullah), gunther.jaeger@fh-stralsund.de (G. Jäger).

ARTICLE IN PRESS

T.M.G. Ahsanullah, G. Jäger / Fuzzy Sets and Systems ••• (••••) •••-••

vergence structures such as probabilistic convergence spaces [6,27,45,48], convergence spaces [11,43], lattice-valued convergence spaces [12,14,15,21,23,24,37,38,41,42,50,51].

The motive behind the present article is to explore the use of stratification mappings between different frames in an attempt to study various *s*-stratified LMN-convergence structures on groups and look at the categories of *s*-stratified LMN-convergence tower groups, *s*-stratified LMN-limit tower groups, *s*-stratified Cauchy tower groups in a more general fashion than the attempt made previously on various convergence structures in conjunctions with groups. This, however, paves the way to *overlooking* the previous work on lattice-valued convergence groups and beyond from a common view point.

We organized our work as follows: in a preliminary section we put some basic facts of lattice theory including the notion of *stratification mapping* with examples that dominate the article; and in Sections 3 and 4, we continue to collect the notions of LM-filters along with some related results, and also, provide some essential results on *s*-stratified LMN-convergence structures introduced and studied in [28,29]. In Section 5, we study *s*-stratified LMN-Cauchy tower spaces. In Section 6, we introduce a notion of *s*-stratified LMN-convergence tower groups, some related properties and characterization, while Section 7 deals with *s*-stratified LMN-cauchy tower groups, and in Section 8, we introduce a notion of *s*-stratified LMN-Cauchy tower group and study the link between this notion and the notion of *s*-stratified LMN-limit tower group. In each section, we provide a good number of stimulating examples in support of our endeavor.

2. Preliminaries

Let $L = (L, \leq, \wedge)$ be a complete lattice, [19,33]. If, moreover, a complete lattice N is equipped with a semigroup operation $*: N \times N \longrightarrow N$ satisfying $\alpha * (\bigvee_{i \in J} \beta_i) = \bigvee_{i \in J} (\alpha * \beta_i)$ and $(\bigvee_{i \in J} \beta_i) * \alpha = \bigvee_{i \in J} (\beta_i * \alpha)$, then $(N, \leq, *)$ is called a *quantale*. A quantale $(N, \leq, *)$ is called *commutative* if the underlying semigroup (N, *) is commutative; furthermore, if it satisfies $\top^N * \alpha = \alpha * \top^N = \alpha$, $\forall \alpha \in N$, then it is called *integral* [20,22,46]. Unless otherwise mentioned, we consider herein this text that $(N, \leq, *)$ is a commutative integral quantale. We denote the category of commutative integral quantales and quantale-homomorphisms by **Quant**. Typical examples of quantales are the following.

- For a left-continuous t-norm * on [0, 1] (see [36]), $([0, 1], \leq, *)$ is a quantale.
- Let Δ^+ be the set of *distance distribution functions*, see [47]. If we consider a sup-continuous triangle function $\tau : \Delta^+ \times \Delta^+ \longrightarrow \Delta^+$, then (Δ^+, \leq, τ) is a quantale.
- Consider $[0, \infty]$ with the opposite order and the usual addition, extended by $x + \infty = \infty + x = \infty$, then $([0, \infty], \ge, +)$ is a quantale.
- A *frame* (L, ≤, ∧) is a quantale with * = ∧. It is commutative, idempotent, and integral. Let Frm denote the category of frames and frame-homomorphisms. We note that for any quantale we have α * β ≤ α ∧ β and that if the quantale operation is idempotent, i.e., α * α = α for all α ∈ L, then * = ∧.

For a commutative quantale and, so for a frame, the implication operation $\rightarrow : L \times L \longrightarrow L$, called *residuum* is given by $\alpha \rightarrow \beta = \bigvee \{\gamma \in L : \alpha * \gamma \leq \beta\}$. For a detailed account on this operation we refer to [20,22,36].

For a frame *L* with top element \top^{L} and bottom element \bot^{L} and a set *X*, we denote the set of all *L*-sets on *X* by $L^{X} (= \{v : X \longrightarrow L\})$. If $A \subseteq X$, then a constant *L*-set with value $\alpha \in L$, is denoted by α_A , and is defined as $\alpha_A(x) = \alpha$, if $x \in A$ and $\alpha_A(x) = \bot^{L}$, elsewhere. In particular, we write \top^{L}_{X} , resp. \bot^{L}_{X} , for the constant *L*-sets with value \top^{L} , resp. \bot^{L} . The lattice operations are extended pointwise from *L* to L^{X} , i.e., we define $(\nu \land \mu)(x) = \nu(x) \land \mu(x), (\nu \lor \mu)(x) = \nu(x) \lor \mu(x), (\bigwedge_{i \in J} \nu_i)(x) = \bigwedge_{i \in J} (\nu_i(x)), (\bigvee_{i \in J} \nu_i)(x) = \bigvee_{i \in J} (\nu_i(x))$. For a mapping $f : X \longrightarrow Y$, $\nu \in L^{X}$ and $\mu \in L^{Y}$, the image of ν under $f, f^{\rightarrow}(\nu) \in L^{Y}$, is defined by $f^{\rightarrow}(\nu)(y) = \bigvee_{f(x)=y} \nu(x)$, for $y \in Y$, and the pre-image of μ under $f, f^{\leftarrow}(\mu) \in L^{X}$, is defined by $f^{\leftarrow}(\mu) = \mu \circ f$. If $\nu \in L^{X}$ and $s : L \longrightarrow M$ is a mapping between the frames *L* and *M*, we define $s(\nu) \in M^{X}$ by $s(\nu)(x) = s(\nu(x)), x \in X$.

If $L, M \in |\mathbf{Frm}|$, then a mapping $s: L \longrightarrow M$ is called a *stratification mapping* if it satisfies (SM1) $s(\perp^L) = \perp^M$, (SM2) $s(\top^L) = \top^M$ and (SM3) $s(\alpha \land \beta) = s(\alpha) \land s(\beta)$ for all $\alpha, \beta \in L$, where \perp^L is the bottom element in L, similarly \perp^M is the bottom element in M; while \top^L denotes top element in L and \top^M is the top element in M. Note that due to (SM3), the stratification mapping s is non-decreasing.

Please cite this article in press as: T.M.G. Ahsanullah, G. Jäger, Stratified *LMN*-convergence tower groups and their stratified *LMN*-uniform convergence tower structures, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.011

Download English Version:

https://daneshyari.com/en/article/6856046

Download Persian Version:

https://daneshyari.com/article/6856046

Daneshyari.com