The existence of vague objects

Giangiacomo Gerla

University of Salerno, Department of Mathematics, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
Received 25 October 2014; received in revised form 25 April 2015; accepted 27 April 2015
Available online 4 May 2015

Abstract

We consider a category whose objects are defined as triplets (S, e, \underline{c}) where S is a set, e is a similarity and $\underline{c} \in S$. An object is called crisp if the similarity is crisp, vague otherwise. We indicate different ways of obtaining a similarity and therefore different ways to obtain an object. The paper is mathematical in nature, nevertheless I hope that the proposed formalisms are in some ways connected with the very interesting ontological question about the existence of vague objects in real world.

© 2015 Elsevier B.V. All rights reserved.

Keywords: Vague objects; Category theory; Ontology; Similarity; Fuzzy subgroups; Fuzzy logic; Ontic vagueness

1. Introduction

Does vagueness exist in sola lingua, or also in re? In particular, is it reasonable to admit that there are vague objects in the world? These questions are very basic both for ontology (see [3-5]) and for understanding the phenomenon of vagueness (see $[1,2,6,7,11,16-22,24]$). They originate a significant debate in the community of philosophers. Usually, starting from Frege and Russell [24], peoples are rather unwilling to accept the existence of vagueness in real world. For example A. Varzi [28], in putting the questions "What exactly is Everest? Where does it begin and where does it end?", accepts that the phenomenon of the vagueness occurs in connection with mount Everest. Nevertheless it rejects the hypothesis for which the term 'Everest' denotes a vague object. This since:
"[vagueness] lies in the representation system (our language, our conceptual apparatus), not in the represented entity, ... one mistakenly infers that the product of a representation is vague because the representation process is vague ..."
and again
"to say that the referent of a geographic term is not sharply demarcated is to say that the term vaguely designates an object, not that it designates a vague object".

[^0]Obviously, there are also philosophers with a totally different opinion, for example Tye [25] says "I believe that there are vague objects...".

While this paper was inspired from these intriguing questions, it is mathematical in nature since confines itself to propose a mathematical model to represent the idea of vague object. Namely, a category is defined whose objects (in the sense of category theory) are defined by an element $\underline{\underline{c}}$, the prototype, a set S containing \underline{c}, the set of possible variation, and a similarity (the notions of prototype and similarity are considered for example by Rosch in [23] and by Vetterlein in [31]). An object is crisp if the similarity is crisp, vague otherwise (see also [13]). This category is related with well known categories proposed in literature to give a solid foundation for fuzzy set theory (see for example [17] and [18]).

2. Abstract entities in mathematics

I start by emphasizing a general schema used in mathematics to define new abstract entities from pre-existing ones. This schema is based on the abstraction process consisting in the passage from a structure S to a quotient S / \equiv of S modulo a congruence \equiv. An object in this new structure is an equivalence class. Perhaps a similar process is also on the basis of the first steps in defining the mathematical structures from the experience. Now, from a technical point of view there is no difference in considering instead of the structure $(S / \equiv,=)$ where $=$ is the identity, the structure (S, \equiv) where \equiv is a congruence. In this case we have to consider as an object a pair (x, \equiv) where $x \in S$. In other words, in several cases
we can view an object in mathematics as at element in a set together with an equivalence criterion.
In the next sub-sections I list some examples.

2.1. Rational numbers

The field of rational numbers is defined from the ring $(Z,+, \cdot)$ of integers as follows:

1. one considers the set $F r=Z \times(Z-\{0\})$ whose elements we call fractions, and one defines two operations + and - in Fr by setting

$$
(n, m)+(p, q)=(n \cdot q+m \cdot p, m q) ; \quad(n, m) \cdot(p, q)=(n \cdot p, m \cdot q)
$$

2. one defines a congruence \equiv in $(F r,+, \cdot)$ by setting

$$
(n, m) \equiv\left(n^{\prime}, m^{\prime}\right) \Leftrightarrow n \cdot m^{\prime}=m \cdot n^{\prime}
$$

3. one considers the quotient $(Q,+, \cdot)$ of $(F r,+, \cdot)$ modulo \equiv.

In brief, the field $(Q,+, \cdot)$ of rational numbers is defined by the equations

$$
\begin{aligned}
& {[(n, m)]=\left\{\left(n^{\prime}, m^{\prime}\right) \in Z \times\left(Z-\{0\}:\left(n^{\prime}, m^{\prime}\right) \equiv(n, m)\right\} \quad \text { for every }(n, m) \in F r\right.} \\
& Q=\{[(n, m)]:(n, m) \in Z \times(Z-\{0\})\} \\
& {[(n, m)]+[(p, q)]=[(n \cdot q+m \cdot p, m q)] ;} \\
& {[(n, m)] \cdot[(p, q)]=[(n \cdot p, m \cdot q)] .}
\end{aligned}
$$

A way to reformulate such a construction is to skip out step 3 and to interpret the identity symbol " $=$ " by the relation \equiv. This means to consider the structure ($Z \times(Z-\{0\}$), $+, \cdot, \equiv$) and therefore to identify a rational number with a fraction $\underline{c}=(n, m)$ together with the equivalence \equiv defined in step 2. Notice that Mathematica embraces this point of view but it implements \equiv by a system of rewriting rules and by a consequent normal form reduction.

In an analogous way we can define the ring Z of integer numbers by starting from the natural numbers.

https://daneshyari.com/en/article/6856085

Download Persian Version:

https://daneshyari.com/article/6856085

Daneshyari.com

[^0]: E-mail address: gerla@unisa.it.
 http://dx.doi.org/10.1016/j.fss.2015.04.015
 0165-0114/© 2015 Elsevier B.V. All rights reserved.

