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Abstract

Stochastic gradient descent (SGD) is a widely-used technique to implement matrix

factorization. SGD-based matrix factorization involves many iterative computations.

Therefore, according to the sequential composition theory of differential privacy,

conventional implementation strategies of differentially private matrix factorization

may lead to significant error accumulation, no matter whether the Laplace noise is

added to the original matrix or to the factorized matrices. In fact, the implementation

of differentially private matrix factorization is so challenging that results proposed to

date have the problem of inefficient privacy and data utility. In this paper, we employ

the objective perturbation method to address the challenge; this method dramatically

alleviates error accumulation by perturbing the objective function instead of perturbing

the results. Our method outperforms the state-of-the-art methods since it only requires

a scalar noise rather than a vector noise to achieve the same magnitude of privacy.

Furthermore, our method may learn the resulted matrices by joint optimization, which

follows the conventional learning procedure of SGD and optimizes its convergence

speed and accuracy as much as possible. In addition to the differential privacy

guarantee, we also empirically show the way that the novel model works together with

k-coRating, a k-anonymity-like privacy preserving model, to enhance data utility.
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