Accepted Manuscript

Jo-DPMF: Differentially Private Matrix Factorization Learning through Joint Optimization

Feng Zhang, Victor E. Lee, Kim-Kwang Raymond Choo

PII: S0020-0255(18)30595-4 DOI: 10.1016/j.ins.2018.07.070

Reference: INS 13837

To appear in: Information Sciences

Received date: 22 November 2017

Revised date: 24 July 2018 Accepted date: 26 July 2018

Please cite this article as: Feng Zhang, Victor E. Lee, Kim-Kwang Raymond Choo, Jo-DPMF: Differentially Private Matrix Factorization Learning through Joint Optimization, *Information Sciences* (2018), doi: 10.1016/j.ins.2018.07.070

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Jo-DPMF: Differentially Private Matrix Factorization Learning through Joint Optimization

Feng Zhang^{a,b,*}, Victor E. Lee^c, Kim-Kwang Raymond Choo^{d,e,a}

^aSchool of Computer Science, China University of Geosciences, Wuhan 430074, China ^bHubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences Wuhan 430074. China

^cGraphSQL Inc., Mountain View, CA 94043, USA

^dDepartment of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249, USA

^eInformation Assurance Research Group, University of South Australia, Adelaide, SA 5095, Australia

Abstract

Stochastic gradient descent (SGD) is a widely-used technique to implement matrix factorization. SGD-based matrix factorization involves many iterative computations. Therefore, according to the sequential composition theory of differential privacy, conventional implementation strategies of differentially private matrix factorization may lead to significant error accumulation, no matter whether the Laplace noise is added to the original matrix or to the factorized matrices. In fact, the implementation of differentially private matrix factorization is so challenging that results proposed to date have the problem of inefficient privacy and data utility. In this paper, we employ the objective perturbation method to address the challenge; this method dramatically alleviates error accumulation by perturbing the objective function instead of perturbing the results. Our method outperforms the state-of-the-art methods since it only requires a scalar noise rather than a vector noise to achieve the same magnitude of privacy. Furthermore, our method may learn the resulted matrices by joint optimization, which follows the conventional learning procedure of SGD and optimizes its convergence speed and accuracy as much as possible. In addition to the differential privacy guarantee, we also empirically show the way that the novel model works together with k-coRating, a k-anonymity-like privacy preserving model, to enhance data utility.

Email address: jeff.f.zhang@gmail.com(Feng Zhang)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/6856140

Download Persian Version:

https://daneshyari.com/article/6856140

<u>Daneshyari.com</u>