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a b s t r a c t 

In this study, we consider an equivalence test on rational numbers in a scenario with K + 2 

distributed parties, Alice, Bob, P 1 , P 2 , . . . , P K , where Alice has a private rational number x a , 

Bob has a private rational number x b , and party P i has a secret s i , where i ∈ { 1 , 2 , . . . , K} , 
K ≥ 2. The parties want to cooperatively detect whether x a = x b without revealing any in- 

formation about their secrets. This problem has many applications in online collabora- 

tion, such as e-voting, which requires public verifiability. First, we develop a provably se- 

cure threshold cryptosystem for rational numbers. Next, based on the proposed threshold 

scheme, we construct a distributed plaintext equivalence test protocol in an honest major- 

ity environment. We prove that the proposed protocol is secure and robust in the standard 

(ideal/real) model. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In this study, we consider the following scenario. K + 2 parties, { P i } i =1 , 2 , ... ,K , Alice and Bob, with private inputs 

{ s i } i =1 , 2 , ... ,K , x a and x b , respectively, want to cooperatively test whether x a = x b (where s i is a share of the private key of 

our threshold encryption scheme for rational numbers, and x a and x b are two rational numbers) under a limiting condition 

that none of them can learn anything about each other’s private inputs. This scenario is known as the distributed plaintext 

equivalence test (PET), which is a special instance of secure multi-party computation [1,8,10–14,16,17,19,20,24,27,28,31] . The 

distributed PET is useful for applications such as e-voting [4] , privacy preservation [2,29,33] , private proximity testing [15] , 

or verifying secrets [22,26] . 

The distributed PET was first proposed by Jakobsson and Juels [13] to test whether two plaintexts are equal based on the 

ElGamal encryptions but without disclosing the two plaintexts. The distributed PET can be defined briefly as follows. 

(1) Each of the parties { P i } 1, 2,…, K first calculates ˆ C i = ( 
ˆ c 1 
ˆ c 2 

) r i and Č i = ( 
č 1 
č 2 

) r i using a random number r i ∈ Z ∗q , where c 1 = 

( ̂ c 1 , ̌c 1 ) and c 2 = ( ̂ c 2 , ̌c 2 ) are two ElGamal ciphertexts of x a and x b . They then publish C i = ( ̂  C i , Č i ) . 

(2) Each party computes ˜ C = ( 
∏ K 

i =1 
ˆ C i , 

∏ K 
i =1 Č i ) . The K parties then jointly decrypt ˜ C . If Dec( ̃  C ) = 1 , then x a = x b . 
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This protocol is secure if less than t users are colluding. Several applications have been developed based on this method, 

such as those by [1,8,19] . In 2005, Li and Wu [16] proposed a three-party private equality test based on the Paillier cryp- 

tosystem. In 2008, Ting and Huang [27] extended the method of Li and Wu [16] to a multi-party distributed equivalence 

test protocol. In 2010, Yang et al. [32] presented an equivalence test protocol based on probabilistic public key encryption. 

Recently, this method was applied to some other interesting cases, such as those given by [18,31] . 

The protocols mentioned above can elegantly solve the PET problem, but they still have some limitations. First, they can 

only solve the PET with integers. Second, the Paillier encryption scheme was utilized incorrectly in some studies, such as 

that by [27] , where the ciphertext c 1 = g m 1 r n 
1 

mod n 2 divided by the ciphertext c 2 = g m 2 r n 
2 

mod n 2 was incorrectly treated as 

a ciphertext of m 1 − m 2 , i.e., 

c 1 
c 2 

= 

g m 1 r n 1 mod n 

2 

g m 2 r n 
2 

mod n 

2 
= g m 1 −m 2 (r 1 r 

−1 
2 ) n mod n 

2 . 

Remark on the incorrect utilization of the Paillier encryption scheme: According to Lemma 3 in the Paillier scheme 

[21] ( B α ∈ Z n 2 is denoted by the set of elements of order n α and by B their disjoint union for α = 1 , 2 , . . . , λ), if x ∈ Z n , y ∈ Z ∗n 
and g ∈ B , then Paillier’s encryption function z = g x y n mod n 2 is bijective. Thus, for g ∈ B and z ∈ Z n 2 , the n -th residuosity 

class of z with respect to g is the unique integer x ∈ Z n for which y ∈ Z ∗n exists such that z = g x y n mod n 2 . c 1 = g m 1 r n 
1 

mod n 2 

and c 2 = g m 2 r n 
2 

mod n 2 are two integers in Z ∗
n 2 

, so obviously, 
c 1 
c 2 

= 

g m 1 r n 
1 

mod n 2 

g m 2 r n 
2 

mod n 2 
is not an integer, except when c 1 = γ c 2 , where 

γ c 2 < n 2 . Hence, for 
c 1 
c 2 

, no pair ( ̃  x , ̃  y ) may exist with a high probability such that 
c 1 
c 2 

= g ̃ x ˜ y n mod n 2 . 

Therefore, it is not correct to evaluate the ciphertext of m 1 − m 2 by employing the method given above ( 
c 1 
c 2 

= 

g m 1 −m 2 (r 1 r 
−1 
2 

) n mod n 2 ). 

In the present study, in order to avoid the incorrect utilization of the Paillier encryption scheme and to test whether two 

rational numbers are equal, we first construct a threshold encryption scheme for rational numbers. Based on this threshold 

encryption, we develop a distributed private equivalence test protocol, where K + 2 parties jointly test whether x a = x b 
(where x a , x b are rational numbers that belong to Alice and Bob, respectively) given that { P i } i =1 , 2 , ... ,K , and Alice and Bob 

cannot learn anything about other’s private inputs. This protocol is efficient and secure with an honest majority assumption, 

and we prove its security in a formal secure multi-party computation framework [ [9] , Chap. 7]. 

2. Building blocks and primitives 

2.1. Adversary model and security definition for secure multiparty computation 

Adversary model. We prove the security of the distributed PET protocol in the secure multiparty computation model 

according to [5,9,25] . Thus, the privacy of the participants in the protocol is defined in terms of the different views of the 

participants with respect to the real-life model and the ideal model. 

In the real model, all of the participants jointly conduct the real protocol under attacks from the adversary A who fully 

controls t − 1 participants { P i } i =1 , 2 , ... ,t−1 as he wishes. At the end of the protocol, all of the participants should output exactly 

what the protocol specifies, and A outputs arbitrary functions (denoted by V A ) of their joint views. 

In the ideal model, all of the participants first deliver their private inputs to a fully trusted party P Trust . Next, P Trust 

privately evaluates the functional values that should be exported by each participant in the specified protocol, and then 

sends the evaluated functional values to each participant. The adversary A fully controls t − 1 participants { P i } i =1 , 2 , ... ,t−1 

with the same index used in the real model. All of the participants output their received values, and the adversary A 

outputs arbitrary functions (denoted by V A ) of their joint views. 

Definition 1. A PET protocol with K + 2 participants is secure with an honest majority if for any probabilis- 

tic polynomial-time adversary A who fully controls t − 1 ( t = 

K 
2 ) participants such that for 2 K + 2 private inputs 

x a , x b , x 1 , x 2 , . . . , x K , x 
′ 
1 
, x ′ 

2 
, . . . , x ′ 

K 
, the distribution ( X a ( x a ), X b ( x b ), X 1 ( x 1 ), X 2 ( x 2 ), . . . , X K (x K ) , V A ) real and the distribution 

(X a (x a ) , X b (x b ) , X 1 (x ′ 
1 
) , X 2 (x ′ 

2 
) , . . . , X K (x ′ 

K 
) , V A ) ideal are computationally indistinguishable. X a ( x a ), X b ( x b ) are the outputs of 

Alice and Bob, respectively, and X i (x i ) , X i (x ′ 
i 
) are the outputs of P i from the real and ideal models. 

2.2. Paillier encryption scheme 

The Paillier encryption scheme E p (G, Enc , Dec ) [21] has the additive homomorphism (for all m 1 , m 2 ∈ Z n and k ∈ N ): 

E pk (m 1 ) E pk (m 2 ) mod n 

2 = E pk (m 1 + m 2 ) , (1) 

E pk (k · m mod n ) = E k pk (m mod n ) mod n 

2 

= E m 

pk (k mod n ) mod n 

2 , (2) 

which is essential for the design of the homomorphic tallying process for many multiparty secure computing protocols. 

We briefly summarize this scheme in Fig. 1 , where p and q are two big prime numbers with equal length, n = pq, λ = 

lcm (p − 1 , q − 1) , g = 1 + kn (k ∈ Z ∗n ) , L (·) = 

U−1 
n (0 < U < n 2 ) , and m, r are integers. 
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