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a b s t r a c t 

This paper aims at solving the sparse reconstruction (SR) problem via a multiobjective evo- 

lutionary algorithm. Existing multiobjective evolutionary algorithms for the SR problem 

have high computational complexity, especially in high-dimensional reconstruction sce- 

narios. Furthermore, these algorithms focus on estimating the whole Pareto front rather 

than the knee region, thus leading to limited diversity of solutions in knee region and 

waste of computational effort. To tackle these issues, this paper proposes an adaptive 

decomposition-based evolutionary approach (ADEA) for the SR problem. Firstly, we em- 

ploy the decomposition-based evolutionary paradigm to guarantee a high computational 

efficiency and diversity of solutions in the whole objective space. Then, we propose a two- 

stage iterative soft-thresholding (IST)-based local search operator to improve the conver- 

gence. Finally, we develop an adaptive decomposition-based environmental selection strat- 

egy, by which the decomposition in the knee region can be adjusted dynamically. This 

strategy enables to focus the selection effort on the knee region and achieves low com- 

putational complexity. Experimental results on simulated signals, benchmark signals and 

images demonstrate the superiority of ADEA in terms of reconstruction accuracy and com- 

putational efficiency, compared to five state-of-the-art algorithms. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The sparse reconstruction (SR) problem widely exists in the under-determined system of linear equations [8,9,20] , es- 

pecially in the field of signal/image processing. There have been many successful applications in this field, such as action 

recognition [54] , image super-resolution [22] , image classification [12] , human detection [41] and background subtraction 

[44] . In the SR problem, we want to recover the unknown sparse signal x from the measurement b in the following under- 

determined system 

b = Ax (1) 

where x is an unknown sparse vector with k nonzero elements ( x ∈ � 

n , k � n ), A is a full-rank sensing matrix ( A ∈ � 

m × n , 

m < n ) and should satisfy the restricted isometry property (RIP) [8] , and b is the measurement vector.Sometimes the signal 

∗ Corresponding author. 

E-mail addresses: yanbai@emails.bjut.edu.cn (B. Yan), qzhao@emails.bjut.edu.cn (Q. Zhao), wangzhihai@bjut.edu.cn (Z. Wang), Andrew.Zhang@uts.edu.au 

(J.A. Zhang). 

https://doi.org/10.1016/j.ins.2018.06.019 

0020-0255/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.ins.2018.06.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.06.019&domain=pdf
mailto:yanbai@emails.bjut.edu.cn
mailto:qzhao@emails.bjut.edu.cn
mailto:wangzhihai@bjut.edu.cn
mailto:Andrew.Zhang@uts.edu.au
https://doi.org/10.1016/j.ins.2018.06.019


142 B. Yan et al. / Information Sciences 462 (2018) 141–159 

x is not sparse but has a sparse representation w with respect to some bases �, such as the Fourier bases and the wavelet 

bases. In this case, Eq. (1) can be transformed to b = A�w , and we only need to reconstruct w before acquiring x by 

x = �w . In this paper, matrices are denoted by bold upper case letters and vectors are highlighted by boldface lower-case 

letters. 

For simplicity, here we focus on the case that the signal x itself is sparse. The compressed sensing theory [10] can be 

employed to reconstruct x by solving the following SR problem: 

min 

x 
‖ x ‖ 0 , s.t. Ax = b (2) 

where ‖ x ‖ 0 represents the number of nonzero elements in x , and ‖·‖ denotes the standard Euclidean norm for a vector. If 

noise is included in the measurements, this problem is updated to 

min 

x 
‖ x ‖ 0 , s.t. ‖ b − Ax ‖ 

2 
2 � σ (3) 

where σ > 0 is a given constant related to the noise. 

The problem in (2) is known to be NP-hard [36] . Quite a few algorithms have been developed to solve this l 0 -norm 

SR problem, such as orthogonal matching pursuit (OMP) [7,39] , compressive sampling matching pursuit [37] and iterative 

hard thresholding methods [5,45] . They perform well only when the measurement samples are much more than nonzero 

elements in x . The l 0 -norm problem can also be transformed to a convex optimization problem [11] , or relaxed by the 

l 1 -norm [4,19,42,46] or l p (0 < p < 1)-norm [33,47,49,52] . The l 1 -norm algorithms are more robust to noise and can recover 

signals with better reconstruction quality. But under some cases (e.g., the matrix A does not satisfy the low coherence 

conditions), they can hardly guarantee the equivalence between l 1 -norm and l 0 -norm. The l p (0 < p < 1)-norm is nonconvex 

and nonsmooth. Its convergence is yet to be proven theoretically, and it is very challenging to derive fast and efficient 

solutions for l p (0 < p < 1)-norm problems. For these relaxation algorithms, the problem in (2) is commonly transformed to 

the following continuous optimization problem 

x = F (x ) = arg min 

x 
λ‖ x ‖ p + 

1 

2 

‖ b − Ax ‖ 

2 
2 

(4) 

where p ∈ (0, 1] and λ denotes the regularization parameter. Here exists the problem of determining λ to balance the ob- 

jective term and the penalty function term ‖ x ‖ 1 , as λ is closely related to the reconstruction quality. However, there is no 

exact method for finding the optimal λ value in practical applications. 

All of the above algorithms we mentioned so far are single objective, and they solve the combined objective function in 

an independent way, where the solution path is fixed. To exploit joint optimization and provide adaptability to the solution 

path, a new approach is proposed to transform Problem (4) to a multiobjective sparse reconstruction (MOSR) problem: 

f (x ) = min 

x 

(‖ x ‖ 0 , ‖ Ax − b ‖ 

2 
2 

)
(5) 

where ‖ x ‖ 0 and ‖ Ax − b ‖ 2 2 represent sparsity and measurement error respectively. 

Multiobjective evolutionary algorithms (MOEAs), such as NSGA-II [17] , differential evolution [38] and MOEA/D [53] , are 

widely used to tackle optimization problems with two or more objectives. MOEAs optimize all the objectives simultaneously 

and can provide a variety of trade-off solutions (termed as Pareto front, PF) among the objectives. Recently, MOEAs, such as 

the soft-thresholding evolutionary multiobjective (StEMO) algorithm [32] , are applied to solve the MOSR problem. StEMO is 

based on the NSGA-II framework and is incorporated with the soft-thresholding algorithm [26] for local search to further 

improve the convergence performance. The knee region on the final PF is proved to provide the best trade-off, because it 

has the largest marginal rates of return [32] . It is selected as the final solution and can be identified by the angle-based 

method [6] . Another two algorithms, an improved MOEA/D with L1/2 solver [30] and sparse preference based local search 

[31] , abbreviated as MOEA/D-L1/2 and SPLS respectively, both integrate iterative threshold algorithms into MOEAs and find 

a local part of Pareto front near the knee region with preference. They use a single starting solution from chain search 

results and weakly Pareto front respectively for local search, and then execute multiple truncations to update the solution 

set and increase the diversity of population. In [48] , the LBEA algorithm is developed by embedding a linear Bregman-based 

[27] local search operator into the differential evolution paradigm. An adaptive strategy is designed for the linear Bregman- 

based local search, where the number of individuals and iterations for local search is adaptive to accelerate convergence. 

These algorithms demonstrate the advantages of MOEA in solving the MOSR problem. However, they can not provide 

fast reconstruction speed due to the use of the Pareto nondominance principle. This can be verified by a simple experiment. 

Assuming a sparse signal with length N = 10 0 0 and sparsity ratio k 
n = 0 . 05 . The nonzero elements are randomly chosen 

from the standard normal distribution. The sensing matrix is a Gaussian random matrix with the dimension 400 × 1000. The 

population size and maximum number of generation are both set to 100. Take StEMO and LBEA as examples, the average 

running time is shown in Fig. 1 . We can see that the Pareto dominance-based selection operators consume the most time 

in both algorithms. 

On the other hand, the reconstruction quality of these algorithms is limited. For StEMO and LBEA, they put search effort 

uniformly over the whole PF. However, the knee region has the solutions with the maximum marginal rates of return, 

which deserves more search effort. Even if in cases when the knee region does not provide the best approximation for the 

ground-truth data, the solutions in this region are still Pareto optimal [32] . Therefore, the computational effort of StEMO 
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