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a b s t r a c t 

Covering arrays are combinatorial designs used as test-suites in software and hardware 

testing. Because of their practical applications, the construction of covering arrays with a 

smaller number of rows is desirable. In this work we develop a greedy-metaheuristic 3- 

stage approach to construct covering arrays that improve some of the best-known ones. In 

the first stage, a covering perfect hash family is created using a metaheuristic approach; 

this initial array may not be complete, and so the derived covering array may have miss- 

ing tuples. In the second stage, the covering perfect hash family is converted to a covering 

array and, in case there are missing tuples, a greedy approach completes the covering ar- 

ray through the addition of some rows. The third stage is an iterative postoptimization 

stage that combines two greedy algorithms and a metaheuristic algorithm; the greedy al- 

gorithms detect and reduce redundancy in the covering array, and the metaheuristic al- 

gorithm covers the tuples that may become uncovered after the reduction of redundancy. 

The effectiveness of our greedy-metaheuristic 3-stage approach is assessed through the 

construction of covering arrays of order four and strengths 3–6; the main results are the 

improvement of 9473 covering arrays of strength three, 9303 of strength four, 2150 of 

strength five, and 291 of strength six. To see how to apply covering arrays to real test- 

ing scenarios, the final part of this work presents the use of covering arrays of order four 

for setting up a composting process. 

© 2018 Published by Elsevier Inc. 

1. Introduction 

A covering array CA( N ; t, k, v ) is a combinatorial design defined by four parameters N, t, k , and v , where N and k are 

respectively the number of rows and columns of the array; v is the order or the number of distinct symbols in every column 

of the array; and t is the strength , which indicates that every one of the 
(

k 
t 

)
subarrays formed by t columns contain as a row 

each t -tuple of order v at least once. Fig. 1 shows a CA(12; 2, 7, 3). This covering array has N = 12 rows and k = 7 columns; 

the order is v = 3 because each column has elements from the alphabet Z 3 = { 0 , 1 , 2 } ; and the strength is t = 2 because 

every one of the 
(

7 
2 

)
= 21 subarrays formed by two columns contains as a row the v t = 3 2 = 9 tuples of length two over Z 3 , 
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Fig. 1. A covering array CA(12; 2, 7, 3). Each column has symbols from the alphabet Z 3 , and every subarray of t = 2 columns contains as a row the nine 

2-tuples over Z 3 at least once. 

which are the tuples (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), and (2,2). Some tuples may appear more than once in a 

subarray, but the requirement is that each tuple appears at least once. 

Covering arrays are the primary objects used in combinatorial testing. Combinatorial testing is an important testing strat- 

egy that has proven to be effective to detect failures in software and hardware components [18] . This technique is based on 

the idea that failures occur due to parameter interactions. Covering arrays are employed because they ensure the coverage 

of all interactions among any t parameters, where t is the strength of the covering array. The covering array of Fig. 1 can 

be used as a test-suite to test interactions of size t = 2 in a component with k = 7 input parameters, each of which has 

v = 3 distinct values. Every row of the covering array is a test-case; for example, the first row is the test-case where the 

first parameter takes its second value, the second parameter takes its third value, the third and fourth parameters take their 

first value, and so on. If a failure in the component occurs when parameter p i takes value x and parameter p j takes value y 

( i < j ), then such failure will be detected by the test-suite defined by CA(12; 2, 7, 3), because the tuple ( x, y ) appears in any 

subarray of two columns. 

When t = 2 the combinatorial technique is called pairwise testing , and it is the basic technique. However, to detect more 

complex failures the size of the parameter interactions (the strength of the covering array) must be incremented. Kuhn et al. 

[19] studied some software systems, and they found that failures are triggered by interactions of at most six parameters. This 

result gives an estimated value of the size of the parameter interactions required to ensure certain reliability of a software 

or hardware component. At present, the research in the construction of covering arrays is devoted mainly to covering arrays 

of strengths two to six. 

The problem of constructing covering arrays can be stated as follows: for t, k, v given, find the smallest value of N such 

that a CA( N ; t, k, v ) exists. The smallest N is denoted by CAN( t, k, v ), and it is called the covering array number of t, k, v . 

Currently, there is no polynomial-time algorithm that can find the exact value of CAN( t, k, v ) for general values of t, k , and v ; 

only specific cases have been solved optimally, for examples see [6,16,17] . Thus, the research in the construction of covering 

arrays is mainly focused on improving the current upper bounds of CAN( t, k, v ). The search for covering arrays better than 

the best-known ones is of practical importance because we can test all interactions of a certain size using fewer test cases. 

To search for better covering arrays, we have developed a greedy-metaheuristic 3-stage approach. The first stage uses a 

metaheuristic algorithm to construct an initial covering perfect hash family (CPHF). CPHFs are arrays that represent certain 

covering arrays in a compact way. The elements of a CPHF are t -tuples over the finite field with v elements. Every one of 

these t -tuples represents a column vector of length v t , and when the elements of a CPHF are replaced by their corresponding 

column vectors the result is a covering array. The reason to use CPHFs in the first stage is that they allow the construction 

of large covering arrays with small computational effort. The first stage was instantiated in this paper with a simulated 

annealing (SA) algorithm. The CPHF is allowed to be incomplete, that is, to have some combinations of t columns that do 

not generate a subarray covering the v t tuples over Z v in the domain of covering arrays. 

The second stage of our approach moves the CPHF resulting from the first stage to the domain of covering arrays. In case 

there are some missing tuples in the resulting array, a greedy approach is used to complete the covering array through the 

addition of rows. 

The third stage is an iterative postoptimization approach that makes a mixture of two greedy algorithms to detect and 

reduce redundancy and a metaheuristic algorithm to cover missing tuples. The first greedy algorithm detects redundant ele- 

ments (elements that do not affect the coverage of the covering array when they are changed). The second greedy algorithm 

eliminates a row from the covering array by copying the non-redundant elements of the row to the redundant elements of 

the other rows; this operation may produce an array that is not a complete covering array. The metaheuristic algorithm of 

the third stage is a SA algorithm whose objective is to cover the missing tuples introduced by the row deletion. If the SA 

algorithm completes the covering array, then a new iteration of the postoptimization stage is executed. 
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