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a b s t r a c t 

This work proposes a method to extract features from texture images by applying a Gaus- 

sian pyramid multiscale approach to the Bouligand–Minkowski fractal descriptors. The pro- 

posal starts from the texture image and computes the stack of multi-resolution images that 

compose the pyramid, in both directions, of reduction and expansion. In the following, 

each image in the stack is mapped onto a surface, which is dilated by spheres with vari- 

able radii and the dilation volumes are used to compute the Bouligand–Minkowski fractal 

descriptors for each level. Both the descriptors of each level and combinations with de- 

scriptors from the original image are verified in the classification of well-known databases 

of textural images. The proposed method outperformed other classical and state-of-the-art 

descriptors with a significant advantage in most cases, including situations where random 

noise is added to the images. 

© 2018 Published by Elsevier Inc. 

1. Introduction 

Since the seminal work of Mandelbrot [16] , the fractal geometry has demonstrated to be a powerful tool for the analysis 

of objects in the real world. Particularly, with the dissemination of computers, a large number of works have proposed to 

analyze digital images representing such objects through fractal-based methods [2,6,11,15,26,29,32–34] . 

In this way, an important objective is to use fractal geometry to find meaningful features to describe the object of interest 

in the image. The most simple and widely used fractal feature is the fractal dimension [19,20] . Nevertheless, despite being 

a descriptive metric, this is only a global value and cannot faithfully express important details of an image observed at 

different scales. Furthermore, the fractal dimension of a real-world structure changes depending on the scale of analysis and 

thus it is not robust enough to characterize an image. Another limitation of fractal dimension is to describe objects by a 

single fractal value whereas in most cases they exhibit a multifractal behavior [15] . 

Several methods have been proposed to address such limitations of fractal dimension. In multifractal theory [13,15] , the 

analysis is performed in two steps: first, a local measure of regularity (Hölder exponent) is assigned to each pixel in the 
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image; second, the features are obtained from the fractal dimension of each subset of the image whose regularity values are 

similar. Different methods to estimate the Hölder exponent have been proposed, for example, using Gaussian filters [33] or 

wavelets [34] . The multifractal spectrum has also been associated to other texture approaches, like SIFT and textons in [32] , 

for example. A related texture descriptor is the local fractal dimension [26,29] . Such alternative employs methods especially 

adapted to estimate the “fractality” of the neighborhood of a pixel and extract statistics from the distribution of these 

measures along the image. The local values can also be used in other frameworks like textons [29] or binary patterns [26] . 

Alternatively, in multiscale fractal dimension (MFD) [4,18] , the power-law relation typically associated to the computation 

of the fractal dimension is explored to estimate the dimension at specific scales. This is done by computing the derivative 

of the power-law curve and the features of interest are provided by properties of the derivative curve, such as minima, 

maxima, area under the curve graph, etc. 

More recently, fractal descriptors have been proposed in [2] as a generalization of MFD to provide a meaningful set of 

features capable of describing the most complex structures. The basic idea is to use all the values in the power-law curve 

and how they are inter-related to provide the image features. Among the methods to compute fractal descriptors, Bouligand–

Minkowski has been successful in a number of theoretical and applied works [2,6,10,11] . In this method, the texture image 

is mapped onto a three-dimensional cloud of points and after that each point is dilated by spheres. The descriptors are 

computed by using the volumes of the dilated structure when the sphere radius is varied. Such descriptors quantify how 

and when the wave-fronts of growing spheres behave within the cloud and, as a consequence, it end up being a complete 

and straightforward measure of pixel arrangements within the image. Although such method has demonstrated its efficiency, 

the descriptors do not take into account that a real-world image is intrinsically multiscale and relevant information may be 

enclosed at different resolutions. Gaussian pyramid theory confirms that features extracted from different levels of sampling 

convey uncorrelated information that can be quite useful for the image representation [25,28,35] . 

Based on these assumptions, we propose a method that computes the fractal descriptors from different resolution levels 

in the Gaussian pyramid [5] . At first, the pyramid is constructed in two directions: reduction and expansion. In the reduction, 

the image is down-sampled recursively and convolved with a Gaussian filter. In the expansion, the image is recursively up- 

sampled using an interpolation process. In the following, the Bouligand–Minkowski fractal descriptors are computed from 

each level in the pyramid (in both directions). The features are obtained either from the fractal descriptors at each level or 

from a combination of descriptors from different levels and from the original texture image. 

The performance of the proposal is assessed in a task of classification of three well-known databases of texture images, 

namely, Outex [22] , USPTex [3] and UIUC [14] . The success rate in the classification is compared to other well-known texture 

descriptors. The proposed method achieved the best results, outperforming state-of-the-art and classical methods widely 

used in the literature. 

2. Gaussian pyramid 

Gaussian pyramids are a well-known multiscale approach to image analysis employed in a number of works in the liter- 

ature [25,28,35] . Roughly speaking, it consists of applying successive down or up-samplings to the original image followed 

by a convolution with a Gaussian kernel. The use of up or down-sample determines what is called the direction of the 

operation. Thus the reduction direction decreases the resolution of the image (down-sample), while the expansion acts in 

the opposite way. 

The reduction acts as an averaging operation where, in the l th level, I l is given by 

I R l (i, j) = 

2 ∑ 

m = −2 

2 ∑ 

n = −2 

w (m, n ) I R l−1 (2 i + m, 2 j + n ) , (1) 

where w is the weight matrix, typically a 5 × 5 matrix of real values obtained from the two-dimensional Gaussian function 

in discrete domain. Similarly, the expansion at the level l is expressed by 

I E l (i, j) = 

2 ∑ 

m = −2 

2 ∑ 

n = −2 

w (m, n ) I E l−1 

(
i − m 

2 

, 
j − n 

2 

)
(2) 

In practice, the first step when obtaining Gaussian pyramids is to compute a discrete filter to represent the Gaussian 

kernel. Given the separability of this kernel, all the process is significantly simplified by considering only one dimension 

(signals). As it will be seen later, the generalization to images (two dimensions) is straightforward. The Gaussian filter is 

approximated by the N-tap Gaussian in [5] , where N is the number of weights. Such weights may be obtained from Pascal 

triangle ( Fig. 1 ), as the Gaussian function describes the normal distribution, which is the continuous form of the binomial 

distribution represented by the coefficients in that triangle. The motivation for using N-tap filtering instead of the classical 

Gaussian smoothing mask in [5] is mainly for computational efficiency. In fact, the authors in [5] show that the second is 

closely approximated by the first and the tap coefficients are encoded by the sum of signed powers of two. In this way, 

the operation of multiplication is replaced by simple addition and shifting, what significantly improves the computational 

performance. This strategy makes the algorithm faster in general without any significant loss of precision. Another charac- 

teristic of this operation is that the original image can be exactly reconstructed, implying that besides allowing the analysis 

of the image from different scale viewpoints, the original information is also preserved. Finally, the smoothing parameter σ
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