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a b s t r a c t 

Boolean matrix factorization has become an important direction in data analysis. In this 

paper, we examine the question of how to assess the quality of Boolean matrix factoriza- 

tion algorithms. We critically examine the current approaches, and argue that little atten- 

tion has been paid to this problem so far and that a systematic approach to it is missing. 

We regard quality assessment of factorization algorithms as a multifaceted problem, iden- 

tify major views with respect to which quality needs to be assessed, and present various 

observations on the available algorithms in this regard. Due to its primary importance, we 

concentrate on the quality of collections of factors computed from data, present a method 

to assess this quality, and evaluate this method by experiments. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

1.1. Problem setting 

During the last decade or so, Boolean matrix factorization (BMF, also Boolean matrix decomposition) became a thoroughly 

explored direction in data analysis. Most of the existing research contributions focused on development of new approaches 

and algorithms. Performance of the developed algorithms has been observed, but its evaluation has remained on intuitive 

grounds or has been conducted in a simple way using the matrix distance function (we review the current approaches 

below). No systematic treatment of quality assessment of BMF algorithms has been pursued so far and this important topic 

thus remains underdeveloped. The primary aim of the present paper is to examine quality assessment of BMF algorithms in 

detail. 

Throughout this paper we use the following notation. The set of all n ×m Boolean matrices shall be denoted by 

{0, 1} n ×m and the particular matrices by I, J , etc. These matrices are primarily interpreted as describing a relationship be- 

tween n objects and m attributes. In particular, the entry I ij corresponding to i th row and j th column indicates whether the 

object i has (in which case I i j = 1 ) or does not have ( I i j = 0 ) the attribute j . The i th row and j th column of I are denoted by 

I i _ and I _ j , respectively. 

The basic problem in BMF, several variants of which are considered in the literature (see below), consists in finding for 

a given Boolean matrix I ∈ {0, 1} n ×m matrices A ∈ {0, 1} n ×k and B ∈ {0, 1} k ×m for which k is small and 

I (approximately) equals A ◦ B. (1) 
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In such a decomposition, k represents the number of factors (i.e. discovered hidden variables, hence the term “factorization”) 

and ◦ represents the Boolean matrix product, which is defined by the formula 

(A ◦ B ) i j = 

k 
max 

l=1 
min (A il , B l j ) . 

The thus introduced factor model provides us with a natural interpretation. A decomposition of a Boolean matrix I into 

A ◦B corresponds to discovery of k factors which explain, exactly or approximately, the data represented by I . In particular, 

the model given by (1) is described as follows: the matrices A (the object-factor matrix) and B (the factor-attribute matrix) 

explain the object-attribute matrix I as follows: the object i has the attribute j iff among the factors there is a factor l such 

that l applies to i and j is one of the particular manifestations of l . 

The approximate equality ≈ in (1) is measured using the well-known matrix norm ( L 1 -norm) || · || defined by 

|| C|| = 

∑ m,n 
i, j=1 | C i j | , 

and the corresponding metric E , which is given for Boolean matrices C, D ∈ {0, 1} n ×m by 

E(C, D ) = || C − D || = 

∑ m,n 
i, j=1 | C i j − D i j | . (2) 

1.2. Illustrative example 

Consider the following 5 × 5 Boolean matrix I : ⎛ 

⎜ ⎜ ⎝ 

0 1 1 0 0 

1 1 1 0 0 

0 1 1 1 0 

0 1 1 1 1 

0 0 0 1 1 

⎞ 

⎟ ⎟ ⎠ 

One may verify that I may be (exactly) factorized by the 5 × 4 and 4 × 5 matrices A and B , i.e. I = A ◦ B, as follows: ⎛ 

⎜ ⎜ ⎝ 

0 1 1 0 0 

1 1 1 0 0 

0 1 1 1 0 

0 1 1 1 1 

0 0 0 1 1 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

1 0 0 0 

1 0 1 0 

1 0 0 1 

1 1 0 1 

0 1 0 0 

⎞ 

⎟ ⎟ ⎠ 

◦

⎛ 

⎜ ⎝ 

0 1 1 0 0 

0 0 0 1 1 

1 1 1 0 0 

0 1 1 1 0 

⎞ 

⎟ ⎠ 

Since the inner dimension in the matrix product is 4, the decomposition involves 4 factors. These factors correspond to 

4 rectangles in that rectangle l ∈ {1, 2, 3, 4} is represented by the product A _ l ◦ B l _ of the l th column of A and the l th row of 

B . The 4 rectangles involved in our factorization are: 

and I equals the ∨ -superposition (i.e. max-superposition) of these rectangles, i.e. I = A _ 1 ◦ B 1 _ ∨ A _ 2 ◦ B 2 _ ∨ A _ 3 ◦ B 3 _ ∨ A _ 4 ◦
B 4 _ . 

If errors are acceptable, one may ask whether there exists an approximate factorization I ≈ A ◦B for which the error 

E ( I, A ◦ B ) is not too large. The following is such an approximate factorization involving two factors: ⎛ 

⎜ ⎜ ⎝ 

0 1 1 0 0 

1 1 1 0 0 

0 1 1 1 0 

0 1 1 1 1 

0 0 0 1 1 

⎞ 

⎟ ⎟ ⎠ 

≈

⎛ 

⎜ ⎜ ⎝ 

1 0 

1 0 

1 1 

1 1 

0 1 

⎞ 

⎟ ⎟ ⎠ 

◦
(

0 1 1 0 0 

0 0 0 1 1 

)
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