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a b s t r a c t 

We start from the very operational perspective – having data, organize them in a suitable 

way to be used in the future – to enter the long standing fray on the nature of inferred 

parameters within a machine learning thread. Still in an operational perspective, we in- 

troduce a parametric inference approach that unprecedentedly gets rid of most drawbacks 

incurred by current methods to compute confidence intervals. The key idea is to consider 

the parameters of the distribution underlying a sample to be random, where randomness 

is expressed in terms of a probability measure of the compatibility of the parameter values 

with the actually observed data. The probability is understood, in a frequentist acceptation, 

in terms of the asymptotic frequency of those parameter values matching the observed 

sample in a story of infinite observations. The aim of this paper is to recap and complete 

theoretical results obtained through our approach as presented in preceding papers. In par- 

ticular, here we focus on statistical tools both for computing confidence regions, at the ba- 

sis of appraising the learnability of a function, and for checking their efficacy. We basically 

support our theory with a series of well-known benchmarks where, as for both volume 

and coverage of the confidence regions, our method proves superior – with very few ties 

– to those of competitors. Then we mention some results in computational learning theory 

that have been achieved recently exactly by adopting our approach, with a special focus 

on a new data_ accuracy - sample_complexity trade off. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

I, at any rate, am convinced that He does not throw dice 1 . The idea of randomness is deeply rooted in human thought. 

However, since the first haruspices trying to divine upcoming events from the flight of birds, it is indissolubly connected 

with the willing of profiting from any information hidden in a random sign. The ways to achieve this goal may depend on 

the available technology. Confining ourselves to a scientific context, we gather these ways in the statistical domain. In this 

framework, we see the computer as one of the most relevant technological leaps of the last century that is reflected in the 

evolution of methodologies from inference to learning. Hiding epistemological aspects in favor of operational ones, we may 

frame these methodologies in the following two essential scenarios, with some abuse of sharpness. The common features 
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are: a distribution law with a cumulative distribution function (CDF) F X θ that is known as for the shape yet unknown for 

the parameter θ and a set of observed data x . Then 

2 : 

• Statistical inference: we assume the data to be the realization of a random sample X drawn from the above distribution 

law given a fixed value θ of its parameter that we try to appreciate in spite of the sample randomness ( fixed parameters 

– random data ). 

• Statistical learning: we assume the data to be conveniently described in terms of a sample x drawn from F X whose 

parameter � may assume different values with proper probabilities, given the values of the data we have observed ( fixed 

data – random parameters ). 

The first framework proves ideal for testing hypotheses (for θ ∈ Θ compute extremal quantile s α of a given statistic). The 

same framework entails inversion problems to compute confidence intervals (for which set of parameters a function s = ρ( x ) 

of the sample – a statistic therefore – may result in an extremal quantile s α?) with a special semantic (the unknown θ will 

fall a fraction α of times in the confidence intervals along an infinite series of i.i.d. random samples drawn exactly with 

θ ), that often prove intractable without proper approximations. The second framework appears more suitable to compute 

confidence intervals. Once the � distribution law is determined, it is just a matter of computing its quantile θα per usual. 

The main benefit is that the semantic is much cleaner. In a long series of samples of whatever distribution law and related 

parameters – possibly changing from one instance to another – if we compute quantiles to obtain a confidence interval of 

level α, we expect these parameters to fall inside the interval with probability exactly equal to α. This is the typical goal 

of a computational learning algorithm, whose success rate is related to the high confidence with which we confine the 

generalization error in a tight interval close to 0, where the confidence is generally expected to be distribution-free over the 

course of human life [25] . We do not escape the necessity of solving inversion problems. Instead, thanks to the availability 

of powerful computational tools, we may successfully locate this problem at the beginning of the learning process – by 

computing the parameter distribution law, rather than at its end – by inverting the quantile formulas, provided it is possible. 

Within this framework we formalize a class of procedures for computing confidence intervals that unprecedentedly get 

rid of the crucial drawbacks and paradoxes variously affecting all current methods on the same task (as we will show 

in the next Section). On the one hand, the key to the success of our approach lies in the linking of the notion of suitable 

statistics to draw inference on parameters to the features of the algorithms that compute them from data. On the other hand, 

precisely this link is at the core of the merger between computational and statistical disciplines underpinning computational 

learning theory. Accordingly, in this paper we provide a set of theorems and numerical benchmarking examples to firmly 

establish the bedrock of our approach and exhibit its benefits with respect to competitors. Then we focus the inference on 

a Bernoulli distribution in order to review some results recently achieved by the authors on the computational learning of 

boolean functions. They establish a further dependence of the sample complexity on the numerical accuracy with which 

data underpinning a learning problem is represented. Therefore, the paper is structured as follows. In Section 3 we recall 

a theory for computing parameter distribution laws introduced in previous papers [2,3] as well as in a couple of books of 

ours [4,5] ; afterward, we extend it to vectorial parameters and strengthen the whole through formal statements. We then 

formalize two general methods for computing parameter distribution laws in both scalar and multidimensional domains. 

In Section 4 we adapt the confidence interval definition to the new framework and review some methods for computing 

it operatively. Section 5 , which is devoted to the numerical results, first highlights the benefit of our procedures in three 

benchmarks; then in a special subsection it extends these results to the computation of the accuracy distribution law in 

the task of learning Boolean functions; finally it mentions some advanced results we got on computational learning theory 

through our approach. The paper ends in Section 7 with conclusions and references to future work. Some supplementary 

material is reported in the Appendix. 

2. A narrow survey on confidence interval methods 

Let us recall the basic definition of confidence interval for a scalar parameter θ . 

Definition 1. Given a r.v. with a scalar parameter � and a real number 0 ≤ δ ≤ 1, ( θdw 

, θup ) is called a 1 − δ confidence 

interval for � if: 

P(θdw 

≤ � ≤ θup ) = 1 − δ (1) 

The quantity δ is called the confidence level of the interval. 

The two scenarios mentioned in the introduction, ( fixed data – random parameters, fixed parameters – random data ), are 

reflected on the epistemological question about which is random, the parameter or the bounds. This entailed an extensive 

debate on how to compute confidence intervals. Cramer approach [11] is manifestly rooted on the former. Even fiducial 

intervals introduced by Fisher [17] are rooted on the former scenario, in spite of the fact that they deal with parameter 

2 By default, capital letters (such as U, X ) will denote random variables and small letters ( u, x ) their corresponding realizations; the sets which the 

realizations belong to will be denoted by capital gothic letters ( U , X ); bold-faced characters will denote vectorial quantities. We denote by P the probability 

of an event. 
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