
Information Sciences 450 (2018) 73–88

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Fast multi-subsequence monitoring on streaming time-series

based on Forward-propagation

Xueyuan Gong

∗, Simon Fong, Yain-Whar Si

Department of Computer and Information Science, University of Macau, Macau, China

a r t i c l e i n f o

Article history:

Received 22 September 2017

Revised 8 March 2018

Accepted 9 March 2018

Available online 11 March 2018

Keywords:

Streaming time-series

Subsequence monitoring

SPRING

NSPRING

FPNS

DTW

a b s t r a c t

Streaming time-series has drawn unprecedented interests from the computer science re-

searchers. It requires faster execution time and less memory space than traditional ap-

proaches in processing historical time-series. Given the real-time constraint in the analysis

over streaming time-series, a proper pre-processing step may not even be applicable. Sub-

sequence monitoring is one of the main functions used in a wide range of time series

related applications, e.g. quantitative trading in the stock market. In this paper, we pro-

pose a novel approach for multi- subsequence monitoring on streaming time-series. The

proposed Forward-propagation NSPRING (FPNS) approach is inspired by the forward prop-

agation mechanism in Artificial Neural Networks (ANN). In our proposed approach the

concept of forward propagation is adopted to by-pass the unnecessary calculations as in

NSPRING where the whole matrix is computed for the final result. FPNS computes a small

part of the matrix by indexing only the necessary calculations with the aid of the forward

propagation mechanism. As a result, FPNS can effectively reduce the execution time. In

the experiments, we compared the scalability, execution time and memory requirement

of FPNS, NSPRING, and UCR-DTW using synthetic and real datasets. The experimental re-

sults show that on average, FPNS is about three times faster than NSPRING and one order

of magnitude faster than UCR-DTW. In addition, FPNS preserves the same accuracy with

NSPRING while FPNS runs much faster than NSPRING.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Increasing number of real-time applications generate vast number of streaming time-series every day. These time-series

comprise of data from computer networks, real-time traffic, electrocardiogram (ECG), electroencephalogram (EEG), stock

price, and weather information. In contrast to traditional historical time-series, updates over streaming time-series hap-

pen in real-time. Such real-time property poses a significant challenge for data mining researchers in designing efficient

algorithms for processing streaming time-series. In particular, streaming time-series online is often fast. The fast updates

demand for lightweight algorithms that are designed to execute very quickly, using less memory space, and perhaps with-

out any data preprocessing. In recent years, many techniques on the processing of streaming time-series were proposed.

These techniques include classification [11,19] , clustering [26,30] , rule discovery [25] , motif discovery [29] and subsequence

monitoring [4,20,23] .

∗ Corresponding author.

E-mail addresses: yb47453@umac.mo , amoonfana@qq.com (X. Gong), ccfong@umac.mo (S. Fong), fstasp@umac.mo (Y.-W. Si).

https://doi.org/10.1016/j.ins.2018.03.023

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.03.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.03.023&domain=pdf
mailto:yb47453@umac.mo
mailto:amoonfana@qq.com
mailto:ccfong@umac.mo
mailto:fstasp@umac.mo
https://doi.org/10.1016/j.ins.2018.03.023

74 X. Gong et al. / Information Sciences 450 (2018) 73–88

Among all the processing techniques on streaming time-series, subsequence monitoring is considered one of the most

fundamental methods since it is widely used in a number of real-world applications, such as technical pattern monitoring

in stock market trends. A technical pattern is thought to be a special subsequence in the stock time-series, which can be

used as signal indicators for the upward/downward direction of the stock price movement. Therefore, monitoring technical

patterns in stock markets helps traders and analyzers to predict the forthcoming stock market trends. Given a sequence

(a time-series), the objective of subsequence monitoring is to identify the subsequences which are the most similar to the

query sequence in real-time. In streaming time-series, the demand on the efficiency of the subsequence monitoring method

is significantly higher than other types of time series processing because streaming time-series cannot be preloaded and

preprocessed from some static data archive. In 2007, Sakurai et al. [23] proposed a method called SPRING to monitor sub-

sequences in streaming time-series. SPRING is faster than the naive method by five orders of magnitude without sacrificing

accuracy. It was reported that the time complexity of SPRING is O(nm), where n is the length of sequence and m is the length

of query sequence. However, SPRING does not support normalization which is prerequisite for obtaining meaningful results

from some of the data sets [8,20] . To alleviate this problem, Gong et al. [4] proposed an algorithm called Normalization-

supported SPRING (NSPRING) to support normalization while maintaining the temporal and space complexity of SPRING.

However, in multi-subsequence monitoring problems, instead of monitoring just one subsequence, thousands of subse-

quences are required to be monitored at the same time. In such cases, an algorithm which is much faster than the currently

available one would be desirable. For example, a quantitative trading system may need to monitor thousands of stock prices

simultaneously for detecting technical patterns. In such circumstances, the system needs to react in seconds or even in mil-

liseconds as stock prices change at any moment. Any delayed reaction may miss buying or selling opportunities. To address

these problems, Forward-propagation NSPRING (FPNS) algorithm for multi-subsequence monitoring is proposed in this pa-

per. The proposed method is inspired by the forward propagation mechanism in Artificial Neural Network (ANN). Instead of

using propagation for tuning parameters in NN, it is used for indexing necessary calculations in the FPNS thereby excluding

all unnecessary calculations to improve the execution time. Specifically, FPNS needs to calculate a n by m matrix. Among the

matrix, necessary cells in the matrix are indexed and calculated while all unnecessary ones are ignored. In some extreme

scenarios, the time complexity of FPNS is O(nm). In normal cases, FPNS can effectively prune at least half of the calculations.

A similar idea is also used in the method called UCR-DTW proposed by Rakthanmanon et al. [20] . UCR-DTW does not

reduce the time complexity of original algorithm (i.e. O(nm

2)). However, it aims to accelerate the Dynamic Time Warping

(DTW) distance calculation by pruning unnecessary computations. Interestingly, UCR-DTW takes only 34 h to run on the

sequence of length trillions (e.g. 1,0 0 0,0 0 0,0 0 0,0 0 0). Thus, pruning unnecessary calculations can significantly improve the

algorithm’s performance.

In this paper, we first compare the scalability of FPNS with NSPRING and UCR-DTW on synthetic datasets. Next, FPNS,

NSPRING and UCR-DTW are tested on the same benchmark datasets from UCR archive [2] . Finally, FPNS, NSPRING and UCR-

DTW are compared on UCI repository [12] to validate their capability on multi-variate sequences. From the experiment

results, we find that FPNS is three times faster than NSPRING and one order of magnitude faster than UCR-DTW. The time

complexity of FPNS and NSPRING are both linear (i.e. O(lnm), where l is the number of query sequence, n is the length of

time-series and m is the length of query sequence). For UCR-DTW, we observe that the pruning ability of UCR-DTW depends

on the convergence of minimum distance D min (Section 4). Specifically, the fast convergence rate of D min to a smaller value

enables UCR-DTW to reduce as much calculations as possible. However, this property is less useful in multi-subsequence

monitoring since D min will converge from the initial state for each query sequence. In other words, the UCR-DTW prefers

a query sequence and a time-series of length 1,0 0 0,0 0 0,0 0 0, rather than 10 0 0 query sequences and a sequence of length

1,0 0 0,0 0 0. Thus, The scalability of UCR-DTW is quadratic based on time complexity O(lnm

2).

We review the related work in Section 2 . In Section 3 , we first introduce the notations and definitions used in this

paper. Next, the FPNS algorithm is described in details. Finally, the experiment results are discussed in Section 4 while

Section 5 concludes the paper.

2. Related work

A number of applications and relevant methods on streaming time-series were proposed in recent years. In multi-

dimensional streaming time-series classification area, Hu et al. [6] proposed a novel framework to increase the accuracy

by considering weights on the class prediction from each stream. Do et al. [3] proposed a Multi-modal and Multi-scale Tem-

poral Metric Learning (M2TML) framework for a robust kNN classifier. Wan and Si [27] formally defined 53 chart patterns in

financial time-series for the classification of them. In approximation area, Luo et al. [13] proposed a real-time algorithm that

generates the optimal Piecewise Linear Approximation (PLA) in terms of representation size while maintaining the max-error

guarantee on streaming time-series. In correlation discovery area, Guo et al. [5] proposed a framework called AEGIS, which

exploits statistical properties to prune the calculation on time-series pairs to speed up the correlation discovery process. In

pattern detection area, Chen et al. [1] proposed a novel distance measure of time-series namely Spatial Assembling Distance

(SpADe), for pattern detection on streaming time-series. The SpADe can handle noise, shifting, and scaling in both temporal

and amplitude dimensions. Miao et al. [14] presented a novel pattern detection method, which is based on the notions of

templates, landmarks, constraints and trust regions instead of accounting for temporal and magnitude deformations. These

approaches show the extent of challenging problems that researchers encounter when addressing various applications on

streaming time-series.

Download English Version:

https://daneshyari.com/en/article/6856458

Download Persian Version:

https://daneshyari.com/article/6856458

Daneshyari.com

https://daneshyari.com/en/article/6856458
https://daneshyari.com/article/6856458
https://daneshyari.com

