
Information Sciences 447 (2018) 1–11

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

DivORAM: Towards a practical oblivious RAM with variable

block size

Zheli Liu

a , Yanyu Huang

a , Jin Li b , ∗, Xiaochun Cheng

c , Chao Shen

d

a College of Computer and Control Engineering, Nankai University, Tianjin, China
b School of Computer Science, Guangzhou University, Guangzhou, China
c Department of Computer Science, Middlesex University, London, UK
d School of Electronic and Information Engineering, Xi’an JiaoTong University, Xi’an, China

a r t i c l e i n f o

Article history:

Received 30 November 2017

Revised 21 February 2018

Accepted 26 February 2018

Available online 6 March 2018

Keywords:

Oblivious RAM

Data privacy

Cloud computing

Access pattern

a b s t r a c t

Oblivious RAM (ORAM) is important for applications that require hiding access patterns.

Many ORAM schemes have been proposed but most of them support only storing blocks

of the same size. For the variable length data blocks, they usually fill them upto the same

length before uploading, which leads to an increase in storage space and network band-

width usage. To develop the first practical ORAM with variable block size, we proposed the

“DivORAM” by remodeling the tree-based ORAM structure. It employs an additively homo-

morphic encryption scheme (Damgård–Jurik cryptosystem) executing at the server side to

save the client computing overhead and the network bandwidth cost. As a result, it saves

network bandwidth 30% comparing with Ring ORAM and 40% comparing with HIRB ORAM.

Experiment results show that the response time of DivORAM is 10 × improved over Ring

ORAM for practical parameters.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the increasing popularity of cloud computing, more and more personal and commercial applications are deployed in

clouds to provide services. While it reduces the cost of software delivery and maintenance, users still hesitate to use these

cloud applications due to privacy concerns. Weak authentication, dishonest employee, and other attacks all lead to data

leakage and further reduce the confidence of customers [3,12–15,17–19,23] . Recently, lots of schemes [1,2,9,11,24,28,29] have

been proposed for protecting data privacy by uploading the encrypted data to the cloud server.

However, encryption along is not enough for protecting the data privacy. The attacks caused by the leakage of data

access patterns have gradually gained more and more attention. In the latest information service architecture, more and

more applications store a great quantity of private data in outsourced devices or servers. Therefore, for an honest and

curious server, it can analyze the access pattern to get some important privacy information that could potentially lead to

privacy leaks without revealing the plaintext. This may lead to serious consequences. For example, a hospital stores privacy

data such as patient information in an outsourced server. When the doctor accesses the data, it is reasonable for the server

to estimate that the patient information accessed by the oncologist is mostly a cancer patient. Therefore, the server can

recognize which category the stored data belongs to. In the meantime, when the same patient information is accessed more

∗ Corresponding author.

E-mail addresses: liuzheli@nankai.edu.cn (Z. Liu), onlyerir@163.com (Y. Huang), jinli71@gmail.com (J. Li), X.Cheng@mdx.ac.uk (X. Cheng),

cshen@sei.xjtu.edu.cn (C. Shen).

https://doi.org/10.1016/j.ins.2018.02.071

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.02.071
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.02.071&domain=pdf
mailto:liuzheli@nankai.edu.cn
mailto:onlyerir@163.com
mailto:jinli71@gmail.com
mailto:X.Cheng@mdx.ac.uk
mailto:cshen@sei.xjtu.edu.cn
https://doi.org/10.1016/j.ins.2018.02.071

2 Z. Liu et al. / Information Sciences 447 (2018) 1–11

Table 1

Comparison with typical ORAMs with tree-based and variable block-size ORAM

scheme. Server storage in all schemes can be set to O (BN), B is the size of one

data blocks, N is the maximum number of blocks stored in ORAM schemes.

Scheme Block size Bandwidth Computation Client Storage

Ring ORAM 64 bytes O (log N) - n (T) · A /2

HIRB ORAM (20 | τ | + R) B O (log N) - ˜ O (log N)

DivORAM O (log 5 N) O (1) O (log 3 N) O (log N)

frequently, the server may deduce that the patient’s medical information is given a high priority, which is likely to be a

critically ill patient, thereby disclosing the patient’s private information.

Oblivious RAM (ORAM). ORAM [8] is a general cryptographic primitive which allows sensitive data accessed obliviously.

The purpose of ORAM is hiding access patterns, through re-encrypting each data and confusing the storage location of data

in every access. After the concept of ORAM was proposed, many ORAM mechanisms [10] emerged. These mechanisms can

be roughly classified into two types depending on the storage structure, layer-based ORAM [20] where data is stored in

several levels and tree-based ORAM [7,25] where the storage construction is a binary tree. Meanwhile, more and more

ORAM protocol are combined secure multi-party computation [6,26] or oblivious databases [22] for better performance.

1.1. The vORAM and challenges

Few works focuses on the variable block-size ORAM (vORAM) like [22] . The simplest way to solve the problem of variable

block size is to fill all the blocks to the same length. Apparently, this method will make the server store a lot of invalid

information. In the worst case, large storage space in the server is wasted to store meaningless information when small size

data accounts for the majority of all data. In practice, it makes the entire ORAM impractical while causing redundancy in

storage space.

In order to solve the above problem, we try to split different size of data into fragments of the same size. Like tree-

based ORAM, we choose a binary tree as the storage construction as well. Each node in the tree has several slots to store a

fragment as a splinter.

Challenges. When blocks are divided into several splinters, we should use the tree’s storage structure as reasonably as

possible to store splinters that belong to the same block on the same path. How to store splinter without wasting storage

space on the server has become a problem we need to solve. Meanwhile, how to read and write splinters that belong to

the same block efficiently and at a fraction of the cost is one challenge we had when designing a solution. In previous tree-

based ORAM scheme like [21] , the eviction will cause heavy communication overhead between the client and the server. In

eviction process, the server must send a lot of block to the client to re-encrypt and permutate the position of these blocks.

In that way, the server knows nothing about whether or not to access the same block. We also hope to find a solution to

reduce the computational and communication overheads of shuffle operations in the client.

1.2. Our contribution

In this paper, we proposed DivORAM to deal with the problem caused by variable block size. It is worth noting that we

have redesigned the tree-based ORAM to rationalize the operation process. We adopt the Private Information Retrieve (PIR)

technique and set up a trusted proxy so that the execution time and network bandwidth can be feasible for the practical

application. We compared bandwidth overhead with Ring ORAM [21] and HIRB ORAM [22] in Table 1 . The main contribution

is as follows:

Optimize server storage. We redesign the structure of the tree with different bucket sizes instead of previous solutions

with same bucket size. In addition, we “cut” a block to several splinters so that no longer need to pad the block, to save

server-side storage. In our new tree structure, each node stores several splinters and no longer stores a block. Every splinter

which belongs to the same block will spread among the same path. In order for the upper level nodes to have enough space

to temporarily store splinters which have not been shuffled, we define the size of the parent node to be twice the size of

the child node.

Constant complexity communication. In DivORAM protocol, we achieve constant complexity bandwidth consumption

in a complete access process. We adopt PIR to minimize the bandwidth during the read operation when we set the block

size to O (log 5 N). The specific analysis is described in Section 5.1 . Meanwhile, we transfer the evict operation to a trusted

proxy so that the write operation was simplified. In this paper, we pay attention to the communication overhead between

the client and the server. Therefore, write operation uses constant complexity bandwidth. Since eviction does not involve

clients, we do not take into account the bandwidth consumption of eviction.

Lightweight client load. The client undertakes little work during the whole visit. Compared to previous ORAM scheme,

the client in DivORAM is no longer involved in shuffle work, and only need a small amount of calculation.

Download English Version:

https://daneshyari.com/en/article/6856495

Download Persian Version:

https://daneshyari.com/article/6856495

Daneshyari.com

https://daneshyari.com/en/article/6856495
https://daneshyari.com/article/6856495
https://daneshyari.com

