
Information Sciences 4 45–4 46 (2018) 1–5

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Single-machine scheduling with operator non-availability to

minimize total weighted completion time

Long Wan

a , Jinjiang Yuan

b , ∗

a School of Information Technology, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 310013, PR China
b School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450 0 01, PR China

a r t i c l e i n f o

Article history:

Received 21 June 2017

Revised 29 January 2018

Accepted 3 March 2018

Available online 5 March 2018

MSC:

90B35

90C27

Keywords:

Single-machine scheduling

Non-availability period

Dynamic programming

Fully polynomial-time approximation

scheme

a b s t r a c t

In this paper, we investigate the single-machine scheduling with an operator non-

availability period to minimize total weighted completion time, where the operator non-

availability period is an open time interval in which no job can be started or be completed.

For this problem, we present a pseudo-polynomial-time algorithm and a fully polynomial-

time approximation scheme. Our results address two open problems proposed in Chen

et al. [2].

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Brauner et al. [1] introduced the scheduling model on a single machine with an operator non-availability period, where

the operator non-availability period is an open time interval (a, b) such that no jobs can be started or completed in

(a, b). Practical applications of this scheduling model can be found in Brauner et al. [1] and Rapine et al. [8] . We denote this

scheduling model by 1|ON| f , where “ON” means the operator non-availability constraint and f is the scheduling cost to be

minimized.

The scheduling model 1|ON| f is closely related to the single-machine non-preemptive scheduling with a machine non-

availability period (a, b), denoted 1, h 1 || f , which was extensively studied in the last decades. Rich achievements on scheduling

with machine availability constraints can be found in Lee [6] , Ma et al. [7] , and Schmidt [9] . Especially, Kacem and Mahjoub

[3] presented an O (n 2 / ε2)-time FPTAS for problem 1, h 1 || �w j C j . Differential approximability of problem 1, h 1 || �w j C j was

also analyzed in Kacem and Paschos [5] .

Brauner et al. [1] noticed that when p max < b − a, where p max is the maximum processing time of the jobs, the machine

cannot process any job in the interval (a, b), and so, the two problems 1|ON| f and 1, h 1 || f are equivalent. Lee [6] showed

that problems 1, h 1 || C max and 1, h 1 || �C j are binary NP-hard. As consequences, both problems 1|ON| C max and 1|ON| �C j are

binary NP-hard.

∗ Corresponding author.

E-mail address: yuanjj@zzu.edu.cn (J. Yuan).

https://doi.org/10.1016/j.ins.2018.03.005

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.03.005&domain=pdf
mailto:yuanjj@zzu.edu.cn
https://doi.org/10.1016/j.ins.2018.03.005

2 L. Wan, J. Yuan / Information Sciences 4 45–4 46 (2018) 1–5

Interestingly, Brauner et al. [1] showed that problem 1|ON| C max is solvable in polynomial time when p min ≥ b − a, where

p min is the minimum processing time of the jobs, but this is not the case for problem 1, h 1 || C max , which is still binary

NP-hard even if p max ≥ b − a .

Chen et al. [2] studied problem 1|ON| �C j . They showed that the problem is binary NP-hard even if p min ≥ b − a, and

presented a 20
17 -approximation algorithm for problem 1|ON| �C j . The approximation result in Chen et al. [2] matches the

20
17 -approximation algorithm for problem 1, h 1 || �C j presented in Sadfi et al. [10] . Recently, by borrowing the FPTAS for

scheduling with machine non-availability, Kacem et al. [4] presented an FPTAS for problem 1|ON| L max .

The analysis and discussion for problem 1|ON| �C j in Chen et al. [2] are more complicated than that for problem 1,

h 1 || �C j in the corresponding literature, for example, Lee [6] and Sadfi et al. [10] . Then Chen et al. [2] presented the following

conclusions in their paper:

It appears that the problems with machine operator non-availability periods are more difficult than problems with ma-

chine non-availability periods. Therefore, it is challenging to design approximation schemes or study the problem where job

have different weights. In fact, whether the problem considered in this paper is strongly NP-hard or even APX-hard remains

open.

In this paper, we address the open problems presented in Chen et al. [2] by establishing the following two results:

• Problem 1|ON| �w j C j is solvable in O (n 2 aW) time, and problem 1|ON| �C j is solvable in O (n 3 a) time, where W is the total

weight of the jobs.

• Problem 1|ON| �w j C j admits a (1 + ε) -approximation algorithm with time complexity O (n 3 / ε3). In our algorithm, we

borrow the O (n 2 / ε2)-time FPTAS for problem 1, h 1 || �w j C j presented in Kacem and Mahjoub [3] .

The paper is organized as follows. We state some useful notations and present the problem formulation in the next

section. In Section 3 , we develop a dynamic programming algorithm to achieve an optimal solution. We construct a fully

polynomial-time approximation scheme in Section 4 .

2. Notations and problem statement

Suppose that we have n jobs J 1 , J 2 , . . . , J n to be processed on a single machine non-preemptively. Each job J j is available

at time 0 and has a processing time p j ≥ 0 and a weight w j ≥ 0. There is an operator non-availability period, denoted (a, b),

on the machine, where 0 < a < b . This means that, in a feasible schedule σ , each job J j must satisfy the condition

S j (σ) / ∈ (a, b) and C j (σ) / ∈ (a, b) , (1)

where S j (σ) and C j (σ) are the starting time and completion time of job J j in σ . We assume in this paper that all the

parameters a, b, p j , and w j are integers.

Let � = b − a be the length of the operator non-availability period. We assume that
∑ n

j=1 p j > a, for otherwise, we can

complete all the jobs prior to the interval (a, b) and the operator non-availability will be meaningless. The scheduling cost

to be minimized is the total weighted completion time, i.e., �w j C j . By using the well-known three-field notation, we denote

the problem by 1|ON| �w j C j , where “ON” means the operator non-availability.

In a feasible schedule σ , if J j is a job such that S j (σ) ≤ a and C j (σ) ≥ b , we call J j a crossover job. Then there is at

most one crossover job in any feasible schedule and, if J j is a crossover job, we have p j ≥�. For convenience, we intro-

duce a dummy job J n +1 with p n +1 = � and w n +1 = 0 so that the following property holds. Let J = { J 1 , J 2 , . . . , J n +1 } and

J c = { J j ∈ J : p j ≥ �} .
Lemma 2.1. For problem 1|ON| �w j C j , there is an optimal schedule such that a certain job in J c is crossover.

Based on Lemma 2.1 , for each J ′ ∈ J c , we use 1|ON, J ′ | �w j C j to denote the restricted problem of 1|ON| �w j C j in which J ′
must act as a crossover job. Then we can solve all the problems 1|ON, J ′ | �w j C j for J ′ ∈ J c and pick the best one for solving

the original problem. From the condition in (1) , we have

Lemma 2.2. Given J ′ ∈ J c , for each feasible schedule σ of problem 1|ON, J ′ | �w j C j , we have max { 0 , b − p ′ } ≤ S ′ (σ) ≤ a .

3. A dynamic programming algorithm

Let J ′ be a job in J c . Let p ′ and w

′ be the processing time and weight of J ′ , respectively. We renumber the n jobs other

than J ′ in J such that J \ { J ′ } = { J 1 , J 2 , . . . , J n } and p 1 / w 1 ≤ p 2 / w 2 ≤ ��� ≤ p n / w n . Moreover, we use σ = (σ ′ , J ′ , σ ′′) to denote

a schedule of problem 1|ON, J ′ | �w j C j , where σ ′ is the subschedule before J ′ in σ , and σ ′ ′ is the subschedule after J ′ in σ .

The following lemma, which can be proved by job-exchanging argument, is useful for our discussion.

Lemma 3.1. For problem 1|ON, J ′ | �w j C j , there is an optimal schedule σ = (σ ′ , J ′ , σ ′′) such that (i) the jobs in σ ′ are scheduled

consecutively with no idle time from time 0 in their index order, (ii) the jobs in (J ′ , σ ′ ′) are scheduled consecutively with no idle

time, (iii) the jobs in σ ′ ′ are scheduled in their index order, and (iv) subject to the condition in (1) , J ′ is scheduled as earlier as

possible.

Download English Version:

https://daneshyari.com/en/article/6856513

Download Persian Version:

https://daneshyari.com/article/6856513

Daneshyari.com

https://daneshyari.com/en/article/6856513
https://daneshyari.com/article/6856513
https://daneshyari.com

