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a b s t r a c t 

In this paper, we investigate the single-machine scheduling with an operator non- 

availability period to minimize total weighted completion time, where the operator non- 

availability period is an open time interval in which no job can be started or be completed. 

For this problem, we present a pseudo-polynomial-time algorithm and a fully polynomial- 

time approximation scheme. Our results address two open problems proposed in Chen 

et al. [2]. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Brauner et al. [1] introduced the scheduling model on a single machine with an operator non-availability period, where 

the operator non-availability period is an open time interval ( a, b ) such that no jobs can be started or completed in 

( a, b ). Practical applications of this scheduling model can be found in Brauner et al. [1] and Rapine et al. [8] . We denote this 

scheduling model by 1|ON| f , where “ON” means the operator non-availability constraint and f is the scheduling cost to be 

minimized. 

The scheduling model 1|ON| f is closely related to the single-machine non-preemptive scheduling with a machine non- 

availability period ( a, b ), denoted 1, h 1 || f , which was extensively studied in the last decades. Rich achievements on scheduling 

with machine availability constraints can be found in Lee [6] , Ma et al. [7] , and Schmidt [9] . Especially, Kacem and Mahjoub 

[3] presented an O ( n 2 / ε2 )-time FPTAS for problem 1, h 1 || �w j C j . Differential approximability of problem 1, h 1 || �w j C j was 

also analyzed in Kacem and Paschos [5] . 

Brauner et al. [1] noticed that when p max < b − a, where p max is the maximum processing time of the jobs, the machine 

cannot process any job in the interval ( a, b ), and so, the two problems 1|ON| f and 1, h 1 || f are equivalent. Lee [6] showed 

that problems 1, h 1 || C max and 1, h 1 || �C j are binary NP-hard. As consequences, both problems 1|ON| C max and 1|ON| �C j are 

binary NP-hard. 
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Interestingly, Brauner et al. [1] showed that problem 1|ON| C max is solvable in polynomial time when p min ≥ b − a, where 

p min is the minimum processing time of the jobs, but this is not the case for problem 1, h 1 || C max , which is still binary 

NP-hard even if p max ≥ b − a . 

Chen et al. [2] studied problem 1|ON| �C j . They showed that the problem is binary NP-hard even if p min ≥ b − a, and 

presented a 20 
17 -approximation algorithm for problem 1|ON| �C j . The approximation result in Chen et al. [2] matches the 

20 
17 -approximation algorithm for problem 1, h 1 || �C j presented in Sadfi et al. [10] . Recently, by borrowing the FPTAS for 

scheduling with machine non-availability, Kacem et al. [4] presented an FPTAS for problem 1|ON| L max . 

The analysis and discussion for problem 1|ON| �C j in Chen et al. [2] are more complicated than that for problem 1, 

h 1 || �C j in the corresponding literature, for example, Lee [6] and Sadfi et al. [10] . Then Chen et al. [2] presented the following 

conclusions in their paper: 

It appears that the problems with machine operator non-availability periods are more difficult than problems with ma- 

chine non-availability periods. Therefore, it is challenging to design approximation schemes or study the problem where job 

have different weights. In fact, whether the problem considered in this paper is strongly NP-hard or even APX-hard remains 

open. 

In this paper, we address the open problems presented in Chen et al. [2] by establishing the following two results: 

• Problem 1|ON| �w j C j is solvable in O ( n 2 aW ) time, and problem 1|ON| �C j is solvable in O ( n 3 a ) time, where W is the total 

weight of the jobs. 

• Problem 1|ON| �w j C j admits a (1 + ε) -approximation algorithm with time complexity O ( n 3 / ε3 ). In our algorithm, we 

borrow the O ( n 2 / ε2 )-time FPTAS for problem 1, h 1 || �w j C j presented in Kacem and Mahjoub [3] . 

The paper is organized as follows. We state some useful notations and present the problem formulation in the next 

section. In Section 3 , we develop a dynamic programming algorithm to achieve an optimal solution. We construct a fully 

polynomial-time approximation scheme in Section 4 . 

2. Notations and problem statement 

Suppose that we have n jobs J 1 , J 2 , . . . , J n to be processed on a single machine non-preemptively. Each job J j is available 

at time 0 and has a processing time p j ≥ 0 and a weight w j ≥ 0. There is an operator non-availability period, denoted ( a, b ), 

on the machine, where 0 < a < b . This means that, in a feasible schedule σ , each job J j must satisfy the condition 

S j (σ ) / ∈ (a, b) and C j (σ ) / ∈ (a, b) , (1) 

where S j ( σ ) and C j ( σ ) are the starting time and completion time of job J j in σ . We assume in this paper that all the 

parameters a, b, p j , and w j are integers. 

Let � = b − a be the length of the operator non-availability period. We assume that 
∑ n 

j=1 p j > a, for otherwise, we can 

complete all the jobs prior to the interval ( a, b ) and the operator non-availability will be meaningless. The scheduling cost 

to be minimized is the total weighted completion time, i.e., �w j C j . By using the well-known three-field notation, we denote 

the problem by 1|ON| �w j C j , where “ON” means the operator non-availability. 

In a feasible schedule σ , if J j is a job such that S j ( σ ) ≤ a and C j ( σ ) ≥ b , we call J j a crossover job. Then there is at 

most one crossover job in any feasible schedule and, if J j is a crossover job, we have p j ≥�. For convenience, we intro- 

duce a dummy job J n +1 with p n +1 = � and w n +1 = 0 so that the following property holds. Let J = { J 1 , J 2 , . . . , J n +1 } and 

J c = { J j ∈ J : p j ≥ �} . 
Lemma 2.1. For problem 1|ON| �w j C j , there is an optimal schedule such that a certain job in J c is crossover. 

Based on Lemma 2.1 , for each J ′ ∈ J c , we use 1|ON, J ′ | �w j C j to denote the restricted problem of 1|ON| �w j C j in which J ′ 
must act as a crossover job. Then we can solve all the problems 1|ON, J ′ | �w j C j for J ′ ∈ J c and pick the best one for solving 

the original problem. From the condition in (1) , we have 

Lemma 2.2. Given J ′ ∈ J c , for each feasible schedule σ of problem 1|ON, J ′ | �w j C j , we have max { 0 , b − p ′ } ≤ S ′ (σ ) ≤ a . 

3. A dynamic programming algorithm 

Let J ′ be a job in J c . Let p ′ and w 

′ be the processing time and weight of J ′ , respectively. We renumber the n jobs other 

than J ′ in J such that J \ { J ′ } = { J 1 , J 2 , . . . , J n } and p 1 / w 1 ≤ p 2 / w 2 ≤ ��� ≤ p n / w n . Moreover, we use σ = (σ ′ , J ′ , σ ′′ ) to denote 

a schedule of problem 1|ON, J ′ | �w j C j , where σ ′ is the subschedule before J ′ in σ , and σ ′ ′ is the subschedule after J ′ in σ . 

The following lemma, which can be proved by job-exchanging argument, is useful for our discussion. 

Lemma 3.1. For problem 1|ON, J ′ | �w j C j , there is an optimal schedule σ = (σ ′ , J ′ , σ ′′ ) such that (i) the jobs in σ ′ are scheduled 

consecutively with no idle time from time 0 in their index order, (ii) the jobs in ( J ′ , σ ′ ′ ) are scheduled consecutively with no idle 

time, (iii) the jobs in σ ′ ′ are scheduled in their index order, and (iv) subject to the condition in (1) , J ′ is scheduled as earlier as 

possible. 
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