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a b s t r a c t 

This paper introduces two graph-based semi-supervised embedding methods for generic 

classification and recognition tasks. These proposed methods combine the merits of Flex- 

ible Manifold Embedding, non-linear graph based embedding, and adaptive loss function. 

The adaptive loss function seems to be a good choice for reaching a flexible and adaptive 

regressor in the sense that the effect of outliers is reduced and the regression function is 

more elastic and more robust. Furthermore, unlike label propagation approaches, the pro- 

posed methods provide a data embedding into a space whose dimension is not limited to 

the number of classes. The adaptive loss function combines the merits of the � 1, 2 and � 2 
matrix norms. It can handle the Laplacian distribution of outliers and the Gaussian distri- 

bution of samples with small loss. We provide extensive experiments on eight benchmark 

datasets in order to study the performance of the proposed methods. These experiments 

show that the proposed methods can be more discriminative than other state-of-the-art 

methods. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Dimension reduction methods have greatly attracted the attention of researchers [5,11,34] in recent times due to their 

ability to accelerate many real applications. By adopting these paradigms, pattern recognition methods become practical 

even if they are applied on very high-dimensional data [18,45] . 

Principal Component Analysis (PCA) is the most popular dimensionality reduction method. PCA is an unsupervised 

method that aims to represent high dimensional samples in a lower dimensional space through a linear transform. Local 

Discriminant Analysis (LDA) [13] is a supervised method that projects samples from their original space to another low 

dimensional space, and brings, at the same time, samples from the same class as close as possible to each other. 

In many real-world problems, collecting a large number of labeled samples is practically impossible. The reason is 

twofold. First, these labeled samples can be very few. Second, for some applications (biometrics, biology) it is very expensive 

to obtain labels in a manual way. On the other hand, unlabeled samples are easily accessible [14,16,40] . Semi-supervised 

methods benefit from labeled samples and unlabeled samples [50] . The labeled samples explicitly contribute to the dis- 

crimination ability of the final model, and the unlabeled ones maintain the geometrical structure of data. In recent years, 

graph-based semi-supervised learning methods have become the subject of many research works because of their success 
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in many domains [2,10,32,43,46,4 8,4 9] . In this context, the supervised Local Discriminant Embedding (LDE) [5] and LDA 

methods are extended to their semi-supervised versions. Namely, Semi-supervised Discriminant Embedding (SDE) [17] and 

Semi-supervised Discriminant Analysis (SDA) [3], by adding a regularizer whose role is to maintain the data smoothness. 

The above mentioned property imposes that close data should remain close after embedding (projection). Graph-based 

semi-supervised embedding techniques receive a lot of attention due to the recent progresses made in the field of graph 

construction [27,39,44,47] . 

The linear techniques such as PCA , LDA , LDE, SDA and SDE have been increasingly important in pattern classification since 

they provide a relatively simple projection of data onto a lower-dimensional subspace, leading to computationally efficient 

classification schemes. However, these methods can have some limitations in the sense that they are strictly linear methods. 

To overcome this shortcoming, researchers proposed many non-linear methods (e.g., [19,30,31] ). Locally Linear Embedding 

(LLE) [33] and Laplacian Eigenmap (LE) [1] are recently proposed as non-linear methods. These methods can beat other 

methods by the fact of non-linearity, but they suffer, on the other hand, from the out-of-sample problem. In other words, 

these methods cannot explicitly provide the projection or the label of an unseen sample. In [25] , the authors proposed 

the Locality Preserving Projections (LPP) method which is a linear approximation to the non-linear Laplacian Eigenmaps. 

These methods attempt to preserve data smoothness among nearby points. We can thus understand the requirement of a 

graph-theoretic learning framework for these methods. Indeed, graph methods are based on an adjacency weight matrix. In 

general, the construction of this matrix depends on the computed distances between samples (this is very often given by 

the Euclidean distance). Qiao et al. proposed the Sparsity Preserving Projections (SPP) algorithm [29] . They propose to con- 

struct an adjacency weight matrix based on a modified sparse representation framework. They devise a linear embedding 

that preserves the sparsity relations among all samples. In [9] , we proposed the Semi-supervised Flexible Feature Extrac- 

tion (SFFE) framework. This framework predicts the embeddings of unlabeled data in a non-linear manner. It estimates, at 

the same time, a linear regression function that can easily transform test (unseen) samples to their new subspace, thus 

estimating their labels. 

In a semi-supervised context, the way the regression function is computed can be crucial in order to get a good model 

that does not suffer from the out-of-sample problem [12] . This involves the regression model (linear or non-linear) as well as 

the loss function used for estimating the model. While these concepts are clear for a cascaded estimation, they become more 

challenging for a simultaneous estimation of the non-linear embedding and the regression model. In general, the regression 

model is estimated by minimizing a loss function between the regressed data and the embeddings (usually assumed to be 

non-linear projections consistent with the semi-supervised criterion over the training data). In most cases, this minimization 

is made following a rigid norm, namely � 1 or � 2 norm. In this paper, inspired by our previous work on simultaneous semi- 

supervised embedding and flexible regression, we propose an Adaptive Semi-supervised Flexible Feature Extraction (ASFFE). 

There are two main differences with our previous approach. Firstly, our approach incorporates non-linear sparsity preserving 

property instead of the classic locality preserving criterion. Secondly, in our proposed Adaptive Semi-supervised Flexible 

Feature Extraction (ASFFE), the loss function is an adaptive norm that is in between � 1 norm and � 2 norms. This norm takes 

into account the outlier samples (distributed according to a Laplacian distribution) as well as normal samples (distributed 

according to a Gaussian distribution). We propose two versions of ASFFE: ASFFE-LE and ASFFE-SPP. The first one is based on 

Laplacian smoothness and the second one is based on non-linear sparsity preserving. We will show that adaptive method is 

more robust than the traditional approach and the state-of-the-art methods. 

The contributions of the proposed methods can be summarized as follows: 

• In addition to predicting embeddings of unlabeled samples in a non-linear way, our proposed methods make it possible 

to predict embeddings for all unseen samples in an easy and adaptive linear way. 

• The proposed methods predict embeddings of samples and not only their labels. Thus, we have flexibility in the choice 

of the classifier that can be deployed after the embedding is estimated. 

• In our proposed methods, the loss function of the regression error (i.e., residual between non-linear data projection 

and their regressed version) is set to an adaptive loss function which combines the merits of � 1 and � 2 norms. The 

mainstream for regression loss function is to use the � 2 norm which cannot behave well in the presence of outlier labels 

or large discrepancies associated with the regressed data. The exploited loss function makes the final embedding flexible 

and adaptive (not very sensitive to large residuals). 

• As already mentioned, ASFFE-SPP is based on sparse representation. This sparsity preserving property provides an addi- 

tional discriminative power to the proposed framework since the sparse representation is somehow discriminative by its 

nature. 

• The proposed methods inherit the properties of SFFE, since SFFE can be considered as a special case of ASFFE. 

For the sake of clarity, Table 1 summarizes the main acronyms used in this paper. 

The remainder of this paper is organized as follows. In Section 2 , we provide a brief review of the main semi-supervised 

learning methods. Our proposed methods are introduced in Sections 3 and 4 . In Section 5 , we present experimental results 

made on eight benchmark datasets. We finally present our conclusion in Section 6 . In this paper, capital bold letters denote 

matrices and small bold letters denote vectors. 
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