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a b s t r a c t 

The detection of gravitational waves with ground-based laser-interferometric detectors re- 

quires sensitivity to changes in distance much smaller than the diameter of atomic nuclei. 

Though sophisticated machinery and techniques have been developed over the past few 

decades to isolate such instruments from non-astrophysical noise, the detectors are still 

susceptible to instrumental and environmental noise transients known as “glitches,” which 

hinder searches for transient gravitational waves. The Gravity Spy project is an effort to 

comprehensively classify the glitches that afflict gravitational wave detectors into morpho- 

logical families by combining the strengths of machine learning algorithms and citizen 

scientists. 

This paper presents the initial Gravity Spy dataset used for citizen scientist and ma- 

chine learning classification – a static, accessible, documented dataset for testing machine 

learning supervised classification. Previous versions of this dataset used in [8, 53] did not 

include all current classes and also for some of the classes, some samples were pruned and 

added. This set consists of time–frequency images of LIGO glitches and their associated 

metadata. These glitches are organized by time–frequency morphology into 22 classes for 

which descriptions and representative images are presented. Results from the application 

of state-of-the-art supervised classification methods to this dataset are presented in order 

to provide baselines for future glitch classification work. Standard splitting for training, val- 

idation, and testing sets are also presented to facilitate the comparison between different 

machine learning methods. The baseline methods are selected from both traditional and 

more recent deep learning approaches. An ensemble framework is developed that demon- 

strates that combining various classifiers can yield a more accurate model for classification. 

The ensemble classifier, trained with the standard training set, achieves 98.21% accuracy on 

the standard test set. 
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1. Introduction 

The recent observations of gravitational waves from binary black hole mergers [3–5,49] have inaugurated a new field 

of observational astronomy by providing a new method with which to explore the cosmos. These observations, made by 

the advanced Laser Interferometer Gravitational wave Observatory (LIGO, [28] ), require sensitivity to fractional changes of 

distance on the order of 10 −21 . The two LIGO detectors are in Hanford, Washington (LHO) and Livingston, Louisiana (LLO). To 

achieve this unprecedented sensitivity, all sensitive components of LIGO are exquisitely isolated from non-gravitational wave 

disturbances. Even with this isolation, the LIGO detectors are susceptible to disturbances that cause noise in the detectors 

and can afflict searches for gravitational waves. 

Of particular concern are transient, non-Gaussian noise sources known colloquially as glitches . Glitches occur at a signifi- 

cant rate, come in many morphologies, and can mask or mimic gravitational wave signals. Work has been done in assessing 

whether or not an instance of excess noise is, in fact, a glitch [10] , but a comprehensive classification and characterization 

of these noise features could allow their origin to be identified and their root cause to be removed from the instruments. 

Attempts to use machine learning algorithms have shown promise in glitch classification endeavors [35,36,40–42] , however 

these techniques do not yet capture the full range of glitch morphologies present in LIGO data. In addition to the above 

methods, Gravity Spy 1 [53] , a citizen science project hosted by the Zooniverse platform [12] that combines the classification 

power of machine learning and crowd-sourcing, provides a solution for addressing this problem. A critical component to the 

Gravity Spy method is the dataset used in training both the machine learning algorithm and the citizens. 

In this paper, we present the Gravity Spy dataset, which is a collection of images of glitches and their associated meta- 

data, in the context of machine learning tasks. We discuss the characteristics of the glitch classes within this data and 

provide an example for each class. To illustrate the complexity of the data and provide a better understanding of the rela- 

tionship between various glitch classes, we visualize the feature space of Gravity Spy dataset. We further present a standard 

benchmark by defining the exact training, testing, and validation split sets that could be used to compare different machine 

learning algorithms. This dataset and standard benchmarks allow for further studies by the machine learning community, 

such as those performed in [21] . We apply state-of-the-art machine learning algorithms such as deep neural networks, sup- 

port vector machines, and ensemble learning on this dataset to provide baselines for future works on this dataset. Although 

the problem considered in this paper is classification, the Gravity Spy dataset can be used for other machine learning tasks, 

such as clustering [51] and image retrieval [17] . 

Overall in this paper we have the following contributions: 

• Introduction of the full specifications of the Gravity Spy dataset. 
• Visualization of the Gravity Spy dataset. 
• Determination of classification baseline accuracies for the dataset by developing classifiers based on neural networks, 

support vector machines, and ensemble learning, which are vital for establishing a control in testing future algorithms. 

In the following sections, we describe the process of producing the images of glitches from raw gravitational wave de- 

tector data ( Section 2.1 ), explain the specifications of glitch classes within this dataset ( Section 2.2 ), investigate the feature 

space of all classes in the dataset ( Section 2.3 ) and present the standard sets ( Section 2.4 ). Finally, different machine learn- 

ing baselines, with performance evaluation and data analysis for supervised classification tasks, are presented in Section 3 . 

Concluding remarks are made in Section 4 . 

2. Gravity Spy data 

Gravitational wave data, including transient noise in the detectors, is often visualized as time–frequency spectrograms. 

The images in the Gravity Spy dataset (used for both human classification and machine learning tasks) are a particular 

type of spectrogram based on decomposition using sine-Gaussian templates, a process known as the Q-transform [15] . The 

Gravity Spy dataset is composed of Q-transform images of any transients recorded by the gravitational wave channels of the 

detectors that exceed a certain threshold in loudness, specifically the signal-to-noise ratio (SNR), and pass the standard set 

of data quality criteria [2] used by LIGO’s real-time gravitational wave searches. 

Additionally, the Gravity Spy machine learning algorithms required a large training set of example images that belong 

to classes of morphologically distinct glitches to be constructed in order to allow machine learning pre-classification of the 

images that would be presented to citizen scientists [53] . To accomplish this, 22 different morphologically distinct classes 

of glitches were selected (the names and morphology of many of these classes had already been identified by the broader 

LIGO Scientific Collaboration [1,2,39] ) and tens to hundreds of example images were hand selected (often with input from 

algorithms, such as the Hierachical Veto [48] that identify classes of glitches by their relationship with other types of dis- 

turbances, such as seismic noise). These classes are also the classification choices (buttons) that citizen scientists have to 

choose from the Gravity Spy project interface. 

Over time, these training sets have expanded. When both the machine learning and volunteer classification of a given 

unlabeled image passes a certain confidence threshold [53] , these images are “retired” and added to the training set. Fur- 

thermore, new glitch classes identified by citizen scientists, volunteers, or clustering algorithms are manually (following 

1 https://www.gravityspy.org . 

https://www.gravityspy.org
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