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a b s t r a c t 

The generalized exponential autoregressive (GExpAR) models are extensions of the classic 

exponential autoregressive (ExpAR) model with much more flexibility. In this paper, we 

first review some development of the ExpAR models, and then discuss the stationary con- 

ditions of the GExpAR model. A new estimation algorithm based on the variable projection 

method is proposed for the GExpAR models. Finally, the models are applied to two real- 

world time series modeling and prediction. Comparison results show that (i) the proposed 

estimation approach is much more efficient than the classic method, (ii) the GExpAR mod- 

els are more powerful in modeling the nonlinear time series. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Many dynamic phenomena such as brain wave records, car vibrations, animal populations and electric circuits can be 

regarded as stochastic processes. In the early stage, these stochastic processes are often approximated by linear time series 

models, e.g., the autoregressive (AR) model, the autoregressive moving average (ARMA) model [16] . Linear models provide 

us convenient tools for controlling and forecasting. 

However, some phenomena essentially display nonlinear behaviors, such as time irreversibility, asymmetry, and self- 

sustained stochastic cyclical behavior, which cannot be explained well by linear time series models. Realizing this, re- 

searchers have proposed numerous nonlinear time series models since the late 1970s. The ExpAR model is one of the most 

excellent nonlinear models in the early stage. It was first used to model the ship rolling data by Ozaki and Oda [38] . Later, 

in a series of works [19,27,28] , the ExpAR model was used to explain the phenomena like jump phenomena, amplitude 

dependent frequency shifts and perturbed limit cycles. Given a time series { x 1 , x 2 , x 3 , . . . } , an ExpAR model of order p is 

defined as 

x t = { c 1 + π1 e 
−γ ·x 2 t−1 } · x t−1 + · · · + { c p + πp e 

−γ ·x 2 t−1 } · x t−p + ε t (1) 

where εt is an i.i.d random variable and independent with x i , and c i , π i , γ are the unknown parameters which need to be 

estimated from observations. 
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Model (1) is the classic form of the ExpAR model. Several variants were proposed later. In [29] , Ozaki gave a more 

complex form of the ExpAR model where the autoregressive coefficients are Hermite type polynomials: 

x t = 

p ∑ 

i =1 

{ 

c i + 

( 

π(i ) 
0 

+ 

k i ∑ 

j=1 

π(i ) 
j 

x j 
t−1 

) 

· e −γ ·x 2 t−1 

} 

· x t−i + ε t (2) 

where π(i ) 
j 

, c i , γ are constants which need to be estimated. 

In [20] , Tong considered a modified ExpAR model, which has been widely used in financial data. It is defined as 

x t = 

p ∑ 

i =1 

{ c i + πi · e −γ ·x 2 
t−i } · x t−i + ε t . (3) 

Another extended version of the ExpAR was suggested by Teräsvirta in [36] : 

x t = (c 0 + π0 e 
−γ (x t−d −z) 2 ) + 

p ∑ 

j=1 

{ c j + π j e 
−γ (x t−d −z) 2 } · x t− j + ε t (4) 

where z is a scalar parameter and d is an integer number. 

Engle and Bollerslev introduced the Autoregressive Conditional Heteroskedasticity (ARCH) and the Generalized Autore- 

gressive Conditional Heteroskedasticity (GARCH) models in [5,13] , which were regarded as the most characteristic examples 

of nonlinear models in conditional variance. LeBaron [25] first proposed the ExpAR model with GARCH error. Later, Koutmos 

generalized LeBaron’s model in [24] and used it to study the daily stock returns in some equity markets of the Pacific Basin 

area. In [23] , P.Katsiampa suggested the ExpAR-ARCH and ExpAR-GARCH models, combining the ExpAR model for the condi- 

tional mean and the ARCH or GARCH model for the conditional variance. Different from LeBaron and Koutmos, P.Katsiampa’s 

model contains the lag of the variable in the exponential term. 

In real-world applications, the stationarity is usually an important precondition for efficient use of time series models. In 

fact, the initial idea of the ExpAR model [38] is to keep the model stationary. Although Ozaki [27,29,30] gave some sufficient 

conditions for the ExpAR model, they are somewhat restrictive. In this paper, we will give less restrictive conditions for the 

ExpAR models, and discuss the ergodic conditions for the GExpAR models. 

For the parameter estimation of the ExpAR model, it is essentially a nonlinear optimization problem. However, Haggan 

and Ozaki [19] converted this nonlinear optimization problem into a linear least squares problem by fixing the parameter 

γ at one of a grid values. This method will work if there is only one nonlinear parameter in the ExpAR model. For the 

GExpAR model, there may be several nonlinear parameters. In this case, if we select the nonlinear parameters from a high- 

dimensional grid of values, the computational load will grow heavily (as will be seen in Section 4 ). Fortunately, the ExpAR 

model and GExpAR models have the form of linear combination of nonlinear functions, i.e., some of the parameters appear 

linearly. Parameter estimation for this kind of models belongs to a class of separable nonlinear least squares (SNLLS) prob- 

lems. The variable projection (VP) method proposed by Golub and Pereyra [17,18] is a high efficient algorithm for solving 

SNLLS problems. This method eliminates the linear parameters from the problem, and thus reduces the dimension of the 

parameter space and resulting in a better-conditioned problem. In this paper, we adopt the VP approach to estimate the 

parameters of the ExpAR and GExpAR models. 

The remainder of this paper is organized as follows. Section 2 explores the geometric ergodicity of the GExpAR models. 

Section 3 shows the implementation of the VP method to optimize the GExpAR model. Numerical results and comparison 

on two sets of real world data are provided in Section 4 . Finally, we summerize the conclusion of this paper in Section 5 . 

2. The ergodicity of the GExpAR model 

In this section, we discuss the stability conditions of the GExpAR models. For clarity, we first introduce some variables 

and symbols. Let us define: 

X t = ( x t , . . . , x t−p+1 ) 
T , 

ε t = ( ε t , 0 , . . . , 0) T , 

C 0 = ( c 0 , 0 , . . . , 0) T , 

A ( X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ϕ 1 ( X ) ϕ 2 ( X ) · · · ϕ p−1 ( X ) ϕ p ( X ) 
1 0 · · · 0 0 

0 1 · · · 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 · · · 1 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 
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