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Abstract: This paper proposes a pixel-wise convolutional neural network (p-CNN) that can recognize the focused and 

defocused pixels in source images from its neighbourhood information for multi-focus image fusion. The proposed 

p-CNN can be thought of as a learned focus measure (FM) and provides more efficiency than conventional handcrafted 

FMs. To enable the p-CNN with the strong capability to discriminate focused and defocused pixels, a comprehensive 

training image set based on a public image database is created. Furthermore, by setting precise labels according to 

different focus levels and adding various defocus masks, the p-CNN can accurately measure the focus level of each 

pixel in source images in which the artefacts in the fused image can be efficiently avoided. We also propose a method 

to implement the p-CNN with a conventional image convolutional neural network (image-wised CNN), which is 

almost 25 times faster than directly using the p-CNN in multi-focus image fusion. Experimental results demonstrate 

that the proposed method is competitive with or even outperforms the state-of-the-art methods in terms of both 

subjective visual perception and objective evaluation metrics. 
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1 Introduction 

  It is difficult to capture an image in which all the objects are in focus under the condition of a finite depth-of-field. The 

main reason is that only the objects at a particular distance from the camera are in focus and sharply captured, whereas 

objects at other distances in front of or behind the focus plane are defocused and blurred [9] [30]. A common method to solve 

this problem is the multi-focus image fusion technique, which aims at obtaining an all-in-focus image by combining two or 

more images taken with diverse focal lengths. This all-in-focus image is more suitable for visual perception or computer 

processing. Thus, multi-focus image fusion can be described as a process that improves the quality of the information in a set 

of images [35, 43]. In the past few years, several multi-focus image fusion methods had been proposed. According to the 

fusion strategy, these methods can be broadly classified into two groups [30] [8]: transform domain-based and spatial 

domain-based methods. 

A. Transform domain-based multi-focus image fusion methods 

  The transform domain-based methods [33] usually employ pyramid decomposition [29] [32], wavelet transform [18] [17] 

and multi-scale geometric analysis [31] [38] in multi-focus image fusion. These image fusion methods mainly include the 

Laplacian pyramid (LP) [6], the gradient pyramid (GP) [32], discrete wavelet transform (DWT) [18], dual tree complex 
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