
Information Sciences 433–434 (2018) 255–273

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

ISAT: An intelligent Web service selection approach for

improving reliability via two-phase decisions

Weidong Wang

a , b , ∗, Zhangqin Huang

a , b , ∗, Liqiang Wang

c

a Faculty of Information Technology, Beijing University of Technology, Beijing, China
b Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing, China
c Dept. of Computer Science, University of Central Florida, Orlando, FL, USA

a r t i c l e i n f o

Article history:

Received 3 March 2017

Revised 17 December 2017

Accepted 25 December 2017

Available online 26 December 2017

Keywords:

Web service

Optimization selection

Reliability

Decision approach

a b s t r a c t

Due to stochasticity and uncertainty of malicious Web services over the Internet, it be-

comes difficult to select reliable services while meeting non-functional requirements in

service-oriented systems. To avoid the unreliable real-world process of obtaining services,

this paper proposes a novel service selection approach via two-phase decisions for en-

hancing the reliability of service-oriented systems. In the first-phase decision, we define

the problem of finding reliable service candidates as a multiple criteria decision mak-

ing (MCDM) problem. Then, we construct a decision model to address the problem. In

the second-phase decision, we define the problem of selecting services based on non-

functional requirements as an optimization problem. Finally, we propose a convex hull

based approach for solving the optimization problem. Large-scale and real-world experi-

ments are conducted to show the advantages of the proposed approach. The evaluation

results confirm that our approach achieves higher success rate and less computation time

to guarantee the reliability when compared to the other state-of-the-art approaches.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Service- oriented architecture (SOA) patterns provide a flexible support for building software applications that use Web

services available in typically large-scale and complex networks [32] . Web services are self-contained and loosely coupled

reusable software components distributed and invoked over the Internet [31] . Compared with traditional stand-alone en-

vironments, the stochastic and unpredictable nature of open distributed environments based on SOA introduces new chal-

lenges in improving service-oriented software reliability [11] . Actually, the challenges are twofold. First, it is difficult to build

fully reliable or fault-free service-based softwares under limited development cost and the pressure of time to market [28] .

Then, it is uncertain whether users previously know which Web services are malicious. This is because the internal designs

and implementation details of remote Web services from the third party are unclear to some extent [47] .

In service-oriented software reliability researches [21] , there are four possible approaches for improving reliability, which

are fault prevention [36] , fault removal [45] , fault prediction [40] , and fault tolerance [12] . Fault prevention and fault re-

moval approaches need to revise the source code of Web services. They may be confined on the limited development cost

and the pressure of time to market. Fault prediction approaches may result in inaccurate prediction because of the un-

predictability of open distributed environments. Instead of removing faults or predicting faults, fault tolerance approaches

∗ Corresponding authors.

E-mail addresses: wangweidong@bjut.edu.cn , weidong_bjtu@126.com (W. Wang), zhuang@bjut.edu.cn (Z. Huang), lwang@cs.ucf.edu (L. Wang).

https://doi.org/10.1016/j.ins.2017.12.048

0020-0255/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2017.12.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2017.12.048&domain=pdf
mailto:wangweidong@bjut.edu.cn
mailto:weidong_bjtu@126.com
mailto:zhuang@bjut.edu.cn
mailto:lwang@cs.ucf.edu
https://doi.org/10.1016/j.ins.2017.12.048

256 W. Wang et al. / Information Sciences 433–434 (2018) 255–273

have been widely applied in building reliable service-oriented softwares. Such approaches can be divided into three cate-

gories based on the roles in the SOA, i.e., provider-, registry- and requester-based approaches, respectively. Provider-based

approaches such as FT-Web [17] and FT-CORBA [15] mainly focus on developing functionally equivalent components running

in parallel or operating another alternative backup component previously designed when the primary component crashes.

Registry-based approaches such as an active UDDI (Universal Description, Discovery and Integration) [33] apply continuous

access and discovery strategies to guarantee that users can obtain the available services needed. Requester-based approaches

employ complex mediation strategies such as ws-reliability [24] to ensure the service to be successfully invoked by other

services when their interface mismatches. Owing to the cost and time of developing redundant components in the provider-

based approaches or designing complex fault tolerance strategies in registry- and requester-based approaches, the above

three fault tolerance approaches are usually only used for critical softwares.

However, one of the promising fault tolerance approaches without paying much money and time for building reliable

service-oriented softwares, commonly known as design diversity, is to adopt functionally equivalent although independently

designed service candidates. The reason is that there are a large number of service candidates with equivalent function yet

different QoS (Quality of Service) implemented by different organizations over the Internet and these service candidates can

be employed as alternative components for tolerating faults. Complementary to previous fault tolerance approaches, which

mainly focus on developing redundant components or designing complex fault tolerance strategies, this paper investigates

how to optimally select fault tolerance components (services) to build reliable service-oriented softwares for the final goal

of improving reliability.

Actually, the limitations of current service selection approaches are, they usually cannot find a good balance between

speed and reliability: either fast and unreliable or slow and reliable. This is because, in an open distributed and service-

oriented environment, there exist some unreliable Web services over the Internet that may be poor-quality, expensive, time-

consuming, or even malicious. Furthermore, if these unreliable Web services cannot be well filtered, any effective service

selection approach will become invalid since these unreliable Web services may result in QoS downgrade, or even lead to an

ineffective selection process. Therefore, a filter for removing unreliable services is indispensable in supporting the selection

process. In addition, as the number of service candidates increases, it may forbiddingly take large amount of time to obtain

the optimal selection result according to the given QoS requirements proposed by users.

To address the issues discussed above, we present an intelligent Web service selection approach for improving reliability

via two-phase decisions, namely ISAT. The ISAT considers not only how to avoid the selection of malicious services, but also

how to maximize the QoS performance of Web services. Different from the previous version [38] , the definition is extended

to any number of non-functional constraints including linear and non-linear constraints. Also unlike the definition in [47] ,

we typically consider the utility of a service as the only parameter of objective function since the other specific parameters,

such as interest and error rate, are introduced in the first-phase decision process. Next, we summarize the major research

contributions of this paper as follows.

• In the first-phase, we define the problem of identifying reliable service candidates as a multiple criteria decision making

(MCDM) problem. Then, we propose the first-phase decision based on the technique for order of preference by simi-

larity to ideal solution (TOPSIS) [10] to address this problem. Compared with traditional decision approaches, our cus-

tomized decision typically considers multiple decision parameters from different dimensions (e.g., user-, condition-, and

environment-specific parameters) according to the characteristics of service-oriented systems.

• In the second-phase, we define the problem of selecting services for an optimal execution plan as the specific 0–1 in-

teger programming problem. Then, we propose a convex hull based approach to solve efficiently this problem. Unlike

traditional decision approaches, the convex hull based decision can reduce the search space of service candidates to the

minimum while ensuring the success rate and accuracy of the solution.

Comprehensive experiments are conducted to study the success rate, computation time, and approximation ratio of our

proposed approach compared with other competing approaches. The experimental results show the high success rate and

efficiency of our approach. The rest of this paper is organized as follows. In Section 2 , we introduce a motivating example

to illustrate the research problem of the paper. In Section 3 , we present the details of the two-phase decisions for Web

service selection including the framework and QoS model of Web services. In Section 4 , we give an illustrative example to

show the computation process of the proposed approach. Section 5 discusses the experiment results. Section 6 reviews the

state-of-the-art relevant to this work. Finally, Section 7 concludes this paper and outlines the future work.

2. Motivating example

We begin by a motivating example to illustrate the research problem. In this paper, an execution plan is an abstract de-

scription for the activities in a commodity trade process, which includes a group of tasks to execute according to a certain

workflow. Fig. 1 indicates that the execution plan has six tasks and each task can execute by invoking a concrete compo-

nent service. In the example, we assume that there are multiple functionally equivalent component Web service candidates

provided by service communities. Meanwhile, we can use universal technologies to ensure the consistency of programming

interface.

As the example in Fig. 1 , there are several challenges to be addressed. (1) There are so many component Web services for

the Task 1. We use Task 1 to make an order for the purpose of trade. Thus we need to identify which service candidates are

Download	English	Version:

https://daneshyari.com/en/article/6856739

Download	Persian	Version:

https://daneshyari.com/article/6856739

Daneshyari.com

https://daneshyari.com/en/article/6856739
https://daneshyari.com/article/6856739
https://daneshyari.com/

