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a b s t r a c t 

Nondeterminism gives computation models the power of existential choice. As a general- 

ization of nondeterminism, “alternation” gives computation models the power of existen- 

tial choice and universal choice simultaneously. In this paper, we extend fuzzy nondeter- 

ministic automata to a model called fuzzy alternating automata over distributive lattices. 

Compared with the previous work, a weight labels a leaf node of the run tree rather than 

be involved in the edge between states when executing a transition. One advantage of our 

setting is that it is easy to complement a given fuzzy alternating automaton. It suffices to 

take the dual operation on the transition function and negate final costs on states. More- 

over, we show that fuzzy alternating automata have the same expressive power as fuzzy 

nondeterministic automata, and the former ones are exponentially more succinct than the 

latter ones. In addition, we illustrate that such exponential blow-up is unavoidable. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Nondeterminism has played important roles in the theory of computation [11] . In formal language theory [10,11] , certain 

class of languages can be described by nondeterministic automata; in complexity theory [1,7,11,13] , nondeterminism is the 

basis of NP-class of decision problems. 

Alternation is a generalized notion of nondeterminism. Alternation gives the computing device the power of existential 

choice and universal choice during the course of a computation, whereas nondeterminism only gives the power of exis- 

tential choice. In order to obtain a theoretical model of parallel computations, the notion of alternating automata was first 

put forward by Chandra et al. [4] . In [4] , Chandra et al. also studied alternating Turing machines and alternating push- 

down automata. Since then, alternating automata has already proven to be a useful model in studying formal verification 

[9,14,16,24,25] . 

In the study of linear temporal logic [24] , Vardi simplified problems such as satisfiability of specifications and correctness 

of programs to ones about nonemptiness and containment of languages accepted by alternating automata. Vardi pointed 

out that alternating automata have the same expressive power as nondeterministic automata, and the former ones are 

exponentially more succinct than the latter ones. Compared with nondeterministic automata, alternating automata are easily 

to be complemented. Taking the dual operation on the transition function and exchanging final and non-final states, we can 

get a new alternating automaton accepting the complemented language with respect to the original alternating automaton. 

To enhance the processing ability of alternating automata, Chatterjee et al. [5] firstly proposed a notion of weighted alter- 

nating automata over the set of real numbers. The expressive power and closure properties of weighted alternating automata 

in some special semantics such as Sup, LimSup, LimInf, LimAvg were shown in [5] . Comparing closure properties of weighted 
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alternating automata and nondeterministic ones with respect to operators on languages such as Max, Min, Complement and 

Sum, Chatterjee et al. illustrated that alternating automata have more expressive power than nondeterministic ones in Li- 

mAvg and Discounted Sum-semantics. Shortly afterwards, Almagor and Kupferman [2] used positive Boolean formulas over 

the Cartesian product of the set of real numbers and the set of states to define another version of weighted alternating 

automata. In the Max-semantic, Almagor et al. also showed that alternating automata have more expressive power than 

nondeterministic ones. Almagor and co-workers [2,5] had already proposed weight alternating automata models, however 

for simplicity only automata with no final costs on states and the expressive power in some special semantics had been 

considered. The discussion of more general cases was not involved in [2,5] . 

In this paper, we put forward a notion of fuzzy alternating automata over distributive lattices using positive Boolean 

formulas over the union of a lattice and the set of states. We take the influence caused by final costs on states into con- 

sideration. Closure properties under union, intersection and complement do hold. In particular, for complement, the dual 

operation can be taken on transition functions effectively. Moreover, we show that fuzzy alternating automata and fuzzy 

nondeterministic ones have the same expressive power, while the former ones are exponentially more succinct than the 

latter ones. 

The content of our paper is arranged as follows. In Section 2 , we briefly recall some basic facts on alternating automata. 

In Section 3 , we introduce a notion of fuzzy alternating automata. Afterwards, the equivalence relation between fuzzy al- 

ternating automata and fuzzy nondeterministic automata and closure properties of fuzzy alternating automata are given in 

Sections 3 and 4 . In addition, we take an example to show the exponential blow-up arising from the translation from a fuzzy 

alternating automaton to a fuzzy nondeterministic automaton is unavoidable. At last, some problems could be considered 

later are shown in Section 5 . 

2. Preliminaries 

In this section, we review a few notions and basic facts [3,4,8,10–12,15,24] . We write J for the index set and write | Q | for 

the cardinal number of the set Q throughout the paper. 

Let X be a set, we use B 

+ (X ) to denote the set of positive Boolean formulas over X , i.e., Boolean formulas built by 

elements of X using ∧ and ∨ . In addition, we put the formulas true and false in B 

+ (X ) . For Y ⊆X and θ ∈ B 

+ (X ) , if the 

value is true after assigning true to elements of Y and assigning false to elements of X �Y , then we say that Y satisfies θ ; 

furthermore, if no strict subset of Y satisfies θ , we say that Y satisfies θ in a minimal manner. Obviously, { x 2 , x 3 , x 4 } satisfies 

the formula ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ∨ x 5 ), and { x 1 , x 3 }, { x 2 , x 5 } both satisfy this formula in a minimal manner, while { x 1 , x 2 } and { x 3 , 

x 5 } do not. 

Before recalling some basic notions and results of alternating automata, we start by reviewing the notion of nonde- 

terministic automata [10,11] . A nondeterministic automaton is a five-tuple A = (Q, �, δ, Q 0 , F ) , where Q , Q 0 and F are 

nonempty finite sets of states, initial states and final states respectively, and Q 0 , F ⊆Q ; � is a nonempty finite alpha- 

bet; δ is a transition function from Q ×� into 2 Q , where 2 Q denotes the set of subsets of Q . A run r of A on a word 

a 1 a 2 …a n ∈ �∗ is a sequence of states q 0 , q 1 , …, q n such that q 0 ∈ Q 0 and q i +1 ∈ δ(q i , a i +1 ) for any i = 0 , . . . , n − 1 , where 

�∗ denotes the set of finite strings over � including empty string ε. Moreover, if q n ∈ F , then r is accepting. The language 

accepted by A is L (A ) = { w ∈ �∗| δ∗(q 0 , w ) ∩ F � = ∅ , q 0 ∈ Q 0 } , where δ∗ is an extension of δ satisfying: (1) δ∗(q, ε) = { q } ; (2) 

δ∗(q, w 1 a ) = 

⋃ 

q ′ ∈ δ∗(q,w 1 ) 
δ(q ′ , a ) for w 1 ∈ �∗. 

Let A = (Q, �, δ, Q 0 , F ) be a nondeterministic automaton. δ maps a state to a set of possible next states after inputting a 

symbol from �, which can be represented by some formulas from B 

+ (Q ) . For example, δ(q, a ) = { q 1 , q 2 , q 3 } can be written 

as δ(q, a ) = q 1 ∨ q 2 ∨ q 3 . Based on this representation, the notion of alternating automata can be given formally. 

An alternating automaton is a five-tuple A = (Q, �, δ, q 0 , F ) , where Q , � and F are the same as those in the nondeter- 

ministic automaton; q 0 ∈ Q is the initial state; δ is a transition function from Q ×� into B 

+ (Q ) . The language accepted by 

A is characterized by induction. For instance, suppose that δ(q, a ) = (q 1 ∧ q 2 ) ∨ q 3 is a transition of A , then A accepts the 

word aw from q , if it accepts the word w from both q 1 and q 2 or from q 3 , where w is a word of �∗. Clearly, this transition 

includes both features of existential choice (the disjunction in the formula) and universal choice (the conjunction in the 

formula). In alternating automata, δ( q , a ) can be an arbitrary formula from B 

+ (Q ) . 

Indeed, an alternating automaton could have more than one initial states. Let A = (Q, �, δ, Q 0 , F ) be a such automa- 

ton with | Q 0 | > 1. We can convert A to another equivalent alternating automaton B with a unique initial state analogously 

to Li and Pedrycz [21,22] . The targeted automaton is B = (Q ∪ { q ′ } , �, δ′ , q ′ , F ) ( q ′ �∈ Q ), where δ′ (q ′ , a ) = 

∨ 

q ∈ Q 0 δ(q, a ) and 

δ′ (q, a ) = δ(q, a ) for any q ∈ Q . Hence, it is sufficient to discuss alternating automata with a unique initial state in the fol- 

lowing. 

Because of the universal choice, a run of an alternating automaton is a tree. The notation | x | denotes the level of node x , 

which is the distance from x to the root ε; in particular, | ε| = 0 . A branch β = x 0 , x 1 , . . . of a tree is a maximal sequence of 

nodes, where x 0 is ε and x i is the parent of x i +1 for any i ≥ 0. In an alternating automaton, a run tree r of it is a Q -labeled 

tree and we use r(x ) = q to denote that q is the label of x of r . 

Definition 2.1 (See [24] ) . Let A = (Q, �, δ, q 0 , F ) be an alternating automaton. A run of A on a finite word w = 

a 0 a 1 . . . a n −1 ( w ∈ �∗) is a finite tree r such that r(ε) = q 0 and the following holds: 
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