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a b s t r a c t

It is well-known that the n-dimensional hypercube Qn is one of the most versatile and effi-

cient interconnection network architecture yet discovered for building massively parallel or

distributed systems. Let F be the faulty set of Qn and let fv, fe be the numbers of faulty vertices

and faulty edges in F, respectively. An edge e = (x, y) is said to be free if e, x, y are not in F, and a

cycle is said to be fault-free if there is no faulty vertex or faulty edge on the cycle. In this paper,

we prove that each free edge (x, y) in Qn for n ≥ 3 lies on a fault-free cycle of any even length

from 6 to 2n − 2 fv if fv + fe ≤ 2n − 5, fe ≤ n − 2 and both x and y are incident to at least two

free edges. This result confirms a conjecture reported in the literature.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A multicomputer system is comprised of a plurality of processors that communicate by exchanging messages via an inter-

connection network (network for short). It is well-known that a topological structure of a network can be modeled by a loopless

undirected graph G, where the vertex set V(G) represents the processors and the edge set E(G) represents the communication

links. In this paper, we use graphs and networks interchangeably.

Let G be a graph. A walk in G is a sequence of vertices (x0, x1, x2, . . . , xk) such that (xi, xi+1) ∈ E(G) for 0 ≤ i ≤ k − 1. If xi �=
xj for every i �= j ∈ {0, 1, . . . , k}, then the walk is a path of length k from x0 to xk, and if further x0 = xk exceptionally, then the

walk is called a cycle of length k. We use P[x, y] to denote a path from x to y, called an (x, y)-path. Two paths are vertex-disjoint

if they have no common vertices. A path (or a cycle, resp.) of length k is called a k-path (or a k-cycle, resp.). A k-cycle is even or

odd depending on the parity of k. By P and C, we commonly denote a path and a cycle respectively, and we denote the length of

P and C by |P| and |C|, respectively. The distance between x and y in G is denoted by dG(x, y), which is the length of a shortest path

between x and y in G. Two graphs G and H are isomorphic, denoted by G ∼= H, if there is a bijection φ between V(G) and V(H) such

that for any u, v ∈ V(G), (u, v) ∈ E(G) if and only if (uφ, vφ) ∈ E(H).

There are a lot of mutually conflicting requirements in designing the topology of a network. It is almost impossible to de-

sign a network which is optimum from all aspects. One has to design a suitable network depending on the requirements and

its properties. One of the central issues in designing and evaluating an interconnection network is to study how well other ex-

isting networks can be embedded into this network. This problem can be modeled by the following graph embedding problem.

Given a host graph H which represents the network into which other networks are to be embedded, and a guest graph G which
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represents the network to be embedded, the problem involves finding a mapping ϕ from V(G) to V(H) such that each edge of

G can be mapped to a path in H. Two common measures of effectiveness of an embedding are the dilation, which measures

the slowdown in the new architecture, and the load factor, which gauges the processor utilization. A graph embedding has two

major applications: transplanting parallel algorithms developed for one network into a different one, and allocating concurrent

processes to processors in the network [30,32].

If a guest graph G is isomorphic to a subgraph H
′

of the host graph H, then any isomorphism map from G to H
′

can be viewed

as a special type of embedding, called isomorphic embedding. An isomorphic embedding is the most important embedding since

such an embedding has both dilation and load one. As two common guest graphs, paths (i.e, linear arrays) and cycles (i.e., rings)

are two fundamental networks for parallel and distributed computation which are suitable for developing simple algorithms with

low communication cost. Many efficient algorithms were originally designed based on paths and/or cycles for solving a variety of

algebraic problems, graph problems and some parallel applications, such as those in image and signal processing [1,3,7,12,30,32].

Thus, it is important to have an effective path and/or cycle embedding in a network.

The cycle embedding problem can also be briefly stated as follows: How to find a cycle of given length into a given graph. If a

graph G contains cycles of every length from 3 to |V(G)|, then it is pancyclic, and it is bipancyclic if it contains a cycle of every even

length from 4 to |V(G)|, where |V(G)| is the number of vertices of G. The pancyclicity is an important measurement to determine

whether a network is suitable for an application mapping rings of any length into the network [10,13,32]. In a heterogeneous

computing system, each edge and each vertex may be assigned with distinct computing power and distinct bandwidth, respec-

tively [28]. Thus, it is worthwhile to extend pancyclicity to edge-pancyclicity and vertex-pancyclicity [4,5,32,33]. If every edge

(or vertex, resp.) of G lies on a cycle of every length form 3 to |V(G)|, then G is said to be edge-pancyclic (or vertex-pancyclic, resp.)

and it is edge-bipancyclic (or vertex-bipancyclic, resp.) if every edge (or vertex, resp.) lies on a cycle of every even length form 4

to |V(G)|. A bipartite graph is one whose vertex set can be partitioned into two nonempty subsets X and Y such that every edge

has one end-vertex in X and the other in Y. Bipancyclicity (or edge-bipancyclicity, vertex-bipancyclicity, resp.) is essentially a

restriction of the concept of pancyclicity (or edge-pancyclicity, vertex-pancyclicity, resp.) to bipartite graphs whose cycles are

necessarily of even length.

Element (edge or vertex) failure is inevitable when an interconnection network is put in use. Therefore, the fault-tolerant

capacity of a network is a critical issue. The problem of fault-tolerant cycle embedding of some networks has received much

attention recently [3,6,7,10,11,13,15,16,18–27,31,32,35]. Let F = Fv ∪ Fe be a faulty set of a graph G, where Fv ⊆ V(G) and Fe ⊆ E(G).

Write fv = |Fv| and fe = |Fe|. A vertex or an edge of G is fault if it is contained in F, and fault-free if it is not in F. Note that a faulty

edge may have fault-free end-vertices and a fault-free edge may have faulty end-vertices. An edge (x, y) is said to be free if it

is fault-free and both its end-vertices are fault-free (see [3, Fig. 1]). A path (or a cycle) is fault-free if it contains neither a faulty

vertex nor a faulty edge. We use G − F to denote the subgraph of G which is induced by {x | x ∈ V(G) and x �∈ F} and does not

contain the edges in F. Hence, an edge in G − F is indeed a free edge of G. A graph G is fault-tolerant bipancyclic (or fault-tolerant

edge-bipancyclic, fault-tolerant vertex-bipancyclic, resp.) if G − F is bipancyclic (or edge-bipancyclic, vertex-bipancyclic, resp.).

An n-dimensional hypercube Qn (an n-cube for short) is one of the most versatile and efficient architecture yet discovered

for building massively parallel or distributed systems. It possesses quite a few excellent properties such as recursive structure,

regularity, symmetry, small diameter, relatively short mean internode distance, low degree, and much small link complexity,

which are very important for designing massively parallel or distributed systems [2,3,7,9,10,12,17,30]. One problem of fault-

tolerant cycle embedding in faulty hypercubes is to determine whether a fault-free cycle of any possible length can be embedded

in hypercubes, that is, the fault-tolerant bipancyclicity of hypercubes [3,24,25,30,32,34]. Here, Qn can have only faulty vertices,

only faulty edges or both faulty vertices and faulty edges. There is also an interesting fault-tolerant cycle embedding problem

which is the fault-tolerant edge-bipancyclicity of hypercubes [13,18,22–26,30,31].

The fault-tolerant bipancyclicity of hypercubes has received a great deal of attention in recent years [3,24,32,34]. Under the

conditional-fault model, that is, each fault-free vertex is incident to at least two free edges, Yang et al. [34] proved that there

exists a fault-free cycle of any even length from 4 to 2n in a faulty n-cube Qn with n ≥ 3 if fe ≤ 2n − 5 and fv = 0. Later Tsai [24]

proved that there exists a fault-free cycle of any even length from 4 to 2n − 2 fv in a faulty n-cube Qn with n ≥ 5 if fv + fe ≤ 2n − 4

and fe ≤ n − 2. Recently, Chang and Hsieh [3] generalized both results by proving that there exists a fault-free cycle of any even

length from 4 to 2n − 2 fv in a faulty n-cube Qn with n ≥ 5 if fv + fe ≤ 2n − 4, fe ≤ 2n − 5 and each vertex is incident to at least

two edges in which each of them is either fault-free or faulty with at least one faulty end-vertex.

For the fault-tolerant edge-bipancyclicity of hypercubes, it has also been investigated by many researchers in recent years

[10,18,19,22–26,29,31,32]. Under the conditional-fault model, Xu et al. [31] proved that each edge in Qn − F with n ≥ 4 lies on a

fault-free cycle of any even length from 6 to 2n if fv = 0 and fe ≤ n − 1; Tsai [22] proved that each edge in Qn − F with n ≥ 3 lies on

a fault-free cycle of any even length from 4 to 2n − 2 fv if fv ≤ n − 2 and fe = 0, and [23] that each edge in Qn − F with n ≥ 4 lies on

a fault-free cycle of any even length from 6 to 2n − 2 fv if fv = n − 1 and fe = 0. In this paper, under the conditional-fault model,

we prove that each edge in Qn − F with n ≥ 3 lies on a fault-free cycle of any even length from 6 to 2n − 2 fv if fv + fe ≤ 2n − 5

and fe ≤ n − 2. This result, together with Xu et al’s result in [31], confirms a conjecture proposed in [22].

As a comparative viewpoint, for the fault-tolerant vertex-bipancyclicity of hypercubes, one may refer to [23,32].

2. Preliminaries

An n-dimensional hypercube Qn is an undirected graph with 2n vertices each labeled with an n-bit binary string

xnxn−1 . . . x2x1, where xi = 0 or 1 for each 1 ≤ i ≤ n, and with two binary strings adjacent if they have exactly
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