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a b s t r a c t

Let Qn be an n-dimensional hypercube with fe 6 3n� 8 faulty edges and n P 5. In this
paper, we consider the faulty hypercube under the following two additional conditions:
(1) each vertex is incident to at least two fault-free edges, and (2) every 4-cycle does not
have any pair of non-adjacent vertices whose degrees are both two after removing the
faulty edges. We prove that there exists a fault-free cycle of every even length from 4 to
2n in Qn . Our result improves the result by Liu and Wang (2014) in terms of the lengths
of embedding cycles, where under the same conditions, a fault-free Hamiltonian cycle
was constructed.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The interconnection network topology is usually represented by a graph, where the vertices represent processors and
the edges represent links between processors. Many interconnection network topologies have been proposed for the
purpose of connecting hundreds of processing elements. Network architecture design is important in cloud data centers
networks. Hua et al. [17] presented the design and implementation of ANTELOPE, a novel datacentric network scheme,
for large-scale data centers. Wu et al. [30] proposed a novel cube structure, ARCube (Aggregate-Ranking Cube), for
supporting efficient ranking aggregate query processing. Ding et al. [10] studied the problem of keyword search in a data
cube with text-rich dimension(s) (so-called text cube). Their goal was to find the top-k most relevant cells and they
proposed four approaches: inverted-index one-scan, document sorted-scan, bottom-up dynamic programming and search-
space ordering.

The hypercube is considered to be one of the most versatile and efficient architecture yet discovered for building mas-
sively parallel or distributed systems. It possesses many excellent properties such as recursive structure, regularity, symme-
try, small diameter, relatively short mean internode distance, low degree, and much small link complexity, which are very
important for designing massively parallel for distributed systems [1]. The n-dimensional hypercube [24], denoted by Qn, is a
simple undirected graph with 2n vertices and n � 2n�1 edges. The vertex set is VðQnÞ ¼ fu0u1 � � �un�1 j ui 2 f0;1g for
0 6 i 6 n� 1g. Two vertices are adjacent if and only if they differ exactly in one bit.
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1.1. Motivating

Since edge faults or vertex faults may occur when a network is put into use, it is practically meaningful to consider faulty
networks. An important property of hypercube is its fault tolerance. The problem of fault-tolerant embedding in the hyper-
cubes has received much attention in recent years [2–4,7,19,21–23,25–28,31,32]. The cycle embedding problem, which deals
with all the possible lengths of cycles in a given graph, has been studied in many interconnection networks, see [5–9,11–
15,18,20–23,25,27–29,32,33]. Let fe be the number of faulty edges in an n-dimensional hypercube Q n. Li et al. [21] proved
that each edge of Qn lies on a fault-free cycle of every even length from 4 to 2n, where fe 6 n� 2 and n P 3. Yang et al.
[32] considered the Q n with fe 6 2n� 5 faulty edges under the condition that each vertex is incident to at least two fault-
free edges and proved that Qn has a fault-free cycle of every even length from 4 to 2n. Liu and Wang [23] considered Q n with
fe 6 3n� 8 faulty edges under the following two conditions: (1) each vertex is incident to at least two fault-free edges, and
(2) every 4-cycle does not have any pair of non-adjacent vertices whose degrees are both two after removing the faulty
edges, and proved that there still exists a fault-free Hamiltonian cycle in Q n. We note that both Li et al. [21] and Yang
et al. [32] proved that there exists a fault-free cycle of every even length from 4 to 2n. However, Yang et al. [32] proved that
the Qn can tolerate more faulty edges under the condition that each vertex is incident to at least two fault-free edges. In this
paper, we are motivated by the results of [21,32,23]. Our goal is to consider the Q n under the conditions (1) and (2) and
obtain a fault-free cycle of every even length from 4 to 2n in Qn when the number of faulty edges is at most 3n� 8.

1.2. Problem statement

Let F be the set of faulty edges in Qn. Under the same conditions (1) and (2), in this paper we shall prove that Qn with
jFj 6 3n� 8 faulty edges has a fault-free cycle of every even length from 4 to 2n, where n P 5.

1.3. Solution and analysis

For Q 5, we will prove the result is true by a single lemma. For Q n (n > 5), firstly, we need to partition an n-dimensional
hypercube Qn into two ðn� 1Þ-cubes, always denoted by Q0

n�1 and Q1
n�1. Throughout this paper, for an edge ðu;vÞ in Qi

n�1, we
always use ðu0;v 0Þ to denote the corresponding edge in Q 1�i

n�1, where hu;v; v 0; u0;ui is a 4-cycle and i ¼ 0;1. Note that both Q 0
n�1

and Q 1
n�1 are isomorphic to Q n�1. See Fig. 1(a). Secondly, we use two ideas to prove the main result.

The first idea is shown in Fig. 1(b).

Step 1: By a known lemma, we can get a fault-free cycle C1 of length ‘ðC1Þ in Q1
n�1, where ‘ðC1Þ ¼ 2n�1.

Step 2: We find an edge, say ðx; yÞ, in C1 such that ðx; x0Þ; ðy; y0Þ and ðx0; y0Þ are fault-free. (Note that ðx; yÞ may be a faulty
edge and C1 � ðx; yÞ is fault-free.) By a known lemma, we find a fault-free cycle C0 of every even length ‘ðC0Þ containing
ðx0; y0Þ in Q0

n�1, where 4 6 ‘ðC0Þ 6 2n�1.
Step 3: Let C0 ¼ ½C1 � ðx; yÞ� � ðx; x0Þ � ðy; y0Þ � ðx0; y0Þ with even length ‘ðC0Þ ¼ ½‘ðC1Þ � 1� þ 3. Then ‘ðC0Þ ¼ 2n�1 þ 2.

Fig. 1. The ideas of the main proof.
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