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a b s t r a c t

This paper presents a novel approach for the coordination of a team of autonomous sensor
platforms searching for lost targets under uncertainty. A real-time receding horizon con-
troller in continuous action space is developed based on a decentralized gradient-based
optimization algorithm and by using the expected observation as an estimate of future
rewards. The expected observation is a cost-to-go heuristic that estimates the goodness
of the states that the platforms could reach. It permits the decision making algorithm to
take into account the information on the whole environment, reducing the time needed
to detect the target. The heuristic, modeled as a sensor, allows us to develop a new team
utility function with low computational cost and high performance. It can be applied to
challenging scenarios such as multi-target search with complex and non-uniform target
probability distributions. Through simulation and statistical analysis, we show the advan-
tages of using the expected observation heuristic in multi-vehicle coordination for search
applications.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The ability of mobile sensors to search for specific targets of interest in a large scale environment has an increasing impor-
tance in many real-life applications. Examples include wildlife monitoring, search and rescue, area patrol, and tactical recon-
naissance. Many of these missions are time-critical, which favors the deployment of multiple mobile sensors. A network of
mobile sensors has demonstrated the ability to enhance sensing flexibility and achieve the mission objective in a
shorter time period. Decentralization among the sensors further provides scalability, modularity, and redundancy to the
network. This reduces the vulnerability to central server failure, which further enhances the overall system robustness. In
particular, there is an active research community proposing mobile sensor decision making solutions for target search
[37,5,12,4,16,27,30,20,13,21,7] and tracking [15,8,17] problems. These solutions intrinsically exploit the action-perception
loop [28,10] to design autonomous cognitive agents based on recent computational and decision models of the human brain
[1,24]. This paper focuses on decision making (e.g., selecting the actions according to the perception) for target search
problems.
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The search problem can be formulated as a probabilistic information gathering task [37,5,16]. Fig. 1 illustrates the prob-
lem where a team of two UAVs coordinate their trajectories to detect possible targets. The subjective information about the
target locations, shown as a colored height map, is given a priori. It is the information that the team uses, in a probabilistic
objective function, to compute their joint action plan. This information or belief1 is updated every time a UAV makes an
observation. It probabilistically describes the target location and helps the team make more precise decisions for finding the
target [4].

We can distinguish two kinds of probabilistic measure used as the team objective function: entropy related ones such as
the mutual information [15,8,17] or the entropy itself [37,38]; and detection related measures [32], such as the probability of
non-detection [9,6,26,14] or the expected time of detection [30,20]. In this paper, we consider the search mission as accom-
plished once the target is found [9,33]. Entropy based measures usually have difficulties guiding the mobile sensors to find
the target in scenarios with general (non-Gaussian) target probability distributions. For instance, in papers such as [16],
although they talk about using an entropy measure as the mutual information, in the case of the search task they finally
implement the logarithmic probability of detecting the target as the optimizing criterion. Therefore, instead of using entropy
related utility functions, we tackle the search problem using a non-detection based objective function. During decision mak-
ing, we plan sensoring trajectories that minimize the probability of target non-detection, or, equivalently, that maximize the
chance of detecting the target.

The complexity of general decision making for the mobile sensor probabilistic search problem is NP-hard [35,3]. That is,
solving the optimal sensor trajectory for the length of the mission horizon is intractable in nature due to the exponential
growth of the decision tree.2 Therefore, assumptions are usually made to simplify the problem into a tractable one. Some of
these approaches are: greedy approximation [5,37], local optimization [14,27,34], coarse-grained representation of the environ-
ment [20] and sampling approximations [21].

Computing the optimal solution for an infinite horizon probabilistic search problem is intractable. However, the search
problem can be successfully tackled by simplifying it to a finite horizon problem [5]. It is critical to balance the algorithm’s
computational time and action myopicity during the action optimization process. It is not a coincidence that although in the
related literature the utility functions are designed for N-length action horizons, the first implementations were simplified to
1-step ahead [15,16,6] or 2-step ahead [37,38] controllers due to issues of computational tractability. It is worth highlighting
that while the first group [15,16,6] were totally myopic, the second ones [37,38] included a discounted expected reward to
reduce the myopicity of the action.

More recent algorithms, such as those proposed in [27,14,20,21], are able to efficiently compute actions N-steps ahead.
They can be classified into two groups, according to the representation of the action space. The first group, the discrete action
algorithms [20,21], are able to tackle dynamic target scenarios using a sampling-based coarse-grained resolution that trades
off between action optimality and computational time. However, discrete optimization is not a real solution, because the
decision variables cannot have continuous values, making the controller more complicated to design if the input signals
do not have the same granularity. The second group, continuous action algorithms [27,14], are designed to tackle static
target scenarios using decentralized optimization.3 None of the N-step ahead action controllers take into account future

Fig. 1. Target search in a probabilistic scenario using a team of UAVs. The colored height map shows the regions with corresponding probability of finding
the targets. This information is used by the team to compute their joint trajectory. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

1 This belief is also known in the literature as the certainty grid [16] or the uncertain probability map [4].
2 Using brute force and assuming that the agent has a fixed and discrete action set u at each state (e.g., turn rate command), the number of nodes at each level

l of the decision tree is jujl and each node should store the whole world knowledge because it is changing. This implies an exponential increase in time and
space, making the infinite horizon optimization NP-hard [29].

3 This type of optimization has been previously studied focusing in decentralization or in the receding horizon approach in papers such as [18,2,31,11],
respectively.
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