Odd cycles embedding on folded hypercubes with conditional faulty edges

Dongqin Cheng, Rong-Xia Hao*, Yan-Quan Feng
Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China

A R T I C L E I N F O

Article history:

Received 21 September 2013
Received in revised form 24 May 2014
Accepted 1 June 2014
Available online 11 June 2014

Keywords:

Folded hypercube
Cycle
Conditional fault
Fault tolerance
Faulty edge
Interconnection network

Abstract

Let $F F_{e}$ be the set of $\left|F F_{e}\right| \leqslant 2 n-5$ faulty edges in an n-dimensional folded hypercube $F Q_{n}$ such that each vertex of $F Q_{n}$ is incident to at least two fault-free edges, where $n \geqslant 4$ and n is even. Under this assumption, we show that every fault-free edge of $F Q_{n}$ lies on a faultfree cycle of every odd length from $n+1$ to $2^{n}-1$. In terms of the number of tolerant faulty edges and embedding odd cycles in $F Q_{n}$, our result improves not only the result in Xu and Ma (2006) where $\left|F F_{e}\right|=0$, but also the previous best result gotten by Xu et al. (2006) where $\left|F F_{e}\right| \leqslant n-1$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The design of interconnection networks is essential to the parallel processing or distributed systems. There are various topologies of interconnection networks, see [10,26,27,31] as extensive references. Among them, the hypercube [31] has many excellent properties such as recursive structure, regularity, symmetry, small diameter, relatively short mean internode distance, low degree and link complexity, which are very important for designing massively parallel or distributed systems [26]. Many variants of the hypercube have been proposed, see $[9,10,13]$ as examples. One of these variants is the folded hypercube, which is constructed from the hypercube by adding an edge of every pair of vertices with complementary addresses. It has been shown that, the folded hypercube is super to the regular hypercube in terms of many measurements [9,37].

An embedding of a guest graph G to another host graph H is a one-to-one mapping from the vertex set of G into the vertex set of H [26]. An embedding strategy provides us a scheme to emulate a guest graph on a host graph [16]. Linear arrays and rings, which are two of the most fundamental networks for parallel and distributed computation, are suitable for designing simple algorithms with low communication costs.

Since faults may happen in the real world networks, it is important to consider faulty networks. The fault-tolerant embedding has been proposed [1-8,11-16,19-25,27-30,32-43]. The fault-tolerant embedding on an n-dimensional folded hypercube $F Q_{n}$ has been studied in many papers such as [3,5,11,14,15,17,18,23-25,29,37,40,41].

Let F_{v} and F_{e} be the sets of faulty vertices and faulty edges of Q_{n}, respectively. Tsai [34] showed that every fault-free edge of Q_{n} lies on a fault-free cycle of every even length from 4 to $2^{n}-2\left|F_{v}\right|$ inclusive if $\left|F_{e}\right|+\left|F_{v}\right| \leqslant n-2$. Tsai [33] also proved

[^0]that every fault-free edge in $Q_{n}-F_{e}$ lies on a cycle of every even length from 6 to 2^{n} under the condition that $\left|F_{e}\right| \leqslant 2 n-5$ if each vertex is incident to at least two fault-free edges, where $n \geqslant 3$.

Let $F F_{e}$ be the set of faulty vertices and faulty edges of $F Q_{n}$, respectively. Xu et al. [40] proved that every edge of $F Q_{n}$ lies on a cycle of every even length from 4 to 2^{n} and a cycle of every odd length from $n+1$ to $2^{n}-1$ when n is even. Xu et al. [41] considered $F Q_{n}$ with $\left|F F_{e}\right| \leqslant n-1$ faulty edges and proved that each fault-free edge of $F Q_{n}$ lies on a fault-free cycle of every even length from 4 to 2^{n} and a cycle of every odd length from $n+1$ to $2^{n}-1$ when n is even. Under the condition that each vertex in $F Q_{n}$ is incident to at least two fault-free edges, Kuo and Hsieh [23] proved that there exists a fault-free cycle of every even length from 4 to 2^{n} if $n \geqslant 2$ and every odd length from $n+1$ to $2^{n}-1$ if $n \geqslant 2$ is even, where $\left|F F_{e}\right| \leqslant 2 n-3$. Hsieh et al. [18] considered $F Q_{n}$ with only one faulty vertex f and showed that $F Q_{n}-\{f\}$ contains a fault-free cycle of every even length from 4 to $2^{n}-2$ if $n \geqslant 3$ and every odd length from $n+1$ to $2^{n}-1$ if $n \geqslant 2$ is even. Cheng et al. [5] studied $F Q_{n}$ with $\left|F F_{v}\right| \leqslant n-2$ faulty vertices and showed that if $n \geqslant 3$, then every edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 4 to $2^{n}-2\left|F F_{v}\right|$; and if $n \geqslant 2$ is even, then every edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every odd length from $n+1$ to $2^{n}-2\left|F F_{v}\right|-1$. Hsieh [15] considered the $F Q_{n}$ with both faulty edges and faulty vertices and proved that there exists a fault-free cycle of length at least $2^{n}-2\left|F F_{\nu}\right|$ in $F Q_{n}$ if $\left|F_{v}\right|+\left|F_{e}\right| \leqslant n-1$, where $n \geqslant 3$. Fu [11] improved the result in [15] and showed that $F Q_{n}-F F_{e}-F F_{v}$ contains a fault-free cycle of length at least $2^{n}-2\left|F F_{v}\right|$ if $\left|F F_{e}\right|+\left|F F_{v}\right| \leqslant 2 n-4$ and $\left|F F_{e}\right| \leqslant n-1$, where $n \geqslant 3$. Hsieh et al. [17] obtained the similar result as $F u$ [11] in $F Q_{n}-F F_{e}-F F_{v}$ with $\left|F F_{v}\right|+\left|F F_{e}\right| \leqslant 2 n-4$ and $\left|F F_{e}\right| \geqslant n$ under the conditional edge faults.

In this paper, we consider the $F Q_{n}$ with $\left|F F_{e}\right| \leqslant 2 n-5$ faulty edges under the condition that each vertex is incident to at least two fault-free edges and prove that every fault-free edge lies on a fault-free cycle of every odd length from $n+1$ to $2^{n}-1$, where $n \geqslant 4$ is even. As for embedding odd cycles in $F Q_{n}$, our result improves the results in [40,41] in terms of the number of fault-tolerant edges.

The remaining of this paper is organized as follows. In Section 2, necessary definitions and notations are introduced. In Section 3, we show our main results. Finally, concluding remarks are in Section 4.

2. Preliminaries

In this paper, a network topology is represented by a simple undirected graph, i.e., loopless and without multiple edges. A graph G is represented by $G=(V, E)$, where V is vertex set and E is edge set. An edge e is denoted by an unordered pair of vertices (u, v), where u and v are end vertices of $e . u$ and v are said to be incident to e, and vice versa. Two edges are adjacent if they have a common vertex. Throughout this paper, network and graph, node and vertex are used interchangeably.

A path P, denoted by $\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle$, is a sequence of distinct vertices, where any two consecutive vertices are adjacent. v_{0} and v_{n} are called end vertices of P. The length of a path, denoted by $l(P)$, is the number of edges in it. A cycle C is a path of length at least three with the same end-vertices.

An isomorphism from a graph G to a graph H is a bijection $\pi: V(G) \rightarrow V(H)$ such that $(u, v) \in E(G)$ if and only if $(\pi(u), \pi(v)) \in E(H) . G$ is called isomorphism to H and denoted by $G \cong H$. An automorphism of G is an isomorphism from G to G. A graph is edge transitive (respectively, node transitive) if for any two edges e_{1} and e_{2} (respectively, v_{1} and v_{2}), there exists an automorphism that maps e_{1} to e_{2} (respectively, v_{1} to v_{2}).

An n-dimensional hypercube Q_{n} is an undirected graph with 2^{n} vertices, which are denoted by n-bit binary strings $u_{n} u_{n-1} \ldots u_{1}$, where $u_{i} \in\{0,1\}$ for $1 \leqslant i \leqslant n$. Two vertices are adjacent if and only if they have only one different bit. The number of different bits between two vertices u and v are defined as Hamming distance, denoted by $d_{H}(u, v)$. The length of the shortest path between u and v in Q_{n} is denoted by $d_{Q_{n}}(u, v)$. Obviously, $d_{H}(u, v)=d_{Q_{n}}(u, v)$ in Q_{n}. An edge is along dimension i if its two end-vertices differ in the i th bit. Let $E_{i}=\left\{\left(u_{n} u_{n-1} \ldots u_{i+1} 0 u_{i-1} \ldots u_{1}, u_{n} u_{n-1} \ldots u_{i+1} 1 u_{i-1} \ldots u_{1}\right) \mid u_{j} \in\{0,1\}\right.$ for $1 \leqslant j \leqslant n$ and $j \neq i\}$. Q_{n} can be partitioned along dimension $i(1 \leqslant i \leqslant n)$ into two $(n-1)$-cubes Q_{n-1}^{0} and Q_{n-1}^{1}, where Q_{n-1}^{0} (respectively, Q_{n-1}^{1}) is induced by the vertex set $\left\{u_{n} u_{n-1} \ldots u_{i+1} 0 u_{i-1} \ldots u_{1} \mid u_{j} \in\{0,1\}\right.$ for $1 \leqslant j \leqslant n$ and $\left.j \neq i\right\}$ (respectively, $\left\{u_{n} u_{n-1} \ldots u_{i+1} 1 u_{i-1} \ldots u_{1} \mid u_{j} \in\{0,1\}\right.$ for $1 \leqslant j \leqslant n$ and $\left.j \neq i\right)$. For an edge e of dimension i, we also say Q_{n} can be divided along edge e of dimension i, which yields the same two $(n-1)$-cubes as those obtained after Q_{n} is divided along dimension i. For convenience, the vertex in Q_{n-1}^{0} (respectively, Q_{n-1}^{1}) is also denoted by $0 x$ (respectively, $1 x$), i.e., $0 x=x_{n} x_{n-1} \ldots x_{i+1} 0 x_{i-1} \ldots x_{1}$ (respectively, $1 x=x_{n} x_{n-1} \ldots x_{i+1} 1 x_{i-1} \ldots x_{1}$). Since Q_{n} is a bipartite graph, the vertices in the two bipartite sets are labeled by white vertices and black vertices, respectively.

An n-dimensional folded hypercube $F Q_{n}$ can be constructed from an n-dimensional hypercube by adding an edge to every pair of vertices with complementary addresses, e.g., vertex $u=u_{n} u_{n-1} \ldots u_{1}$ and vertex $\bar{u}=\bar{u}_{n} \bar{u}_{n-1} \ldots \bar{u}_{1}$, where $u_{n}+\bar{u}_{n}=1$. The set of all the complementary edges are denoted by E_{a}, i.e., $E_{a}=\left\{\left(u_{n} u_{n-1} \ldots u_{1}, \bar{u}_{n} \bar{u}_{n-1} \ldots \bar{u}_{1}\right) \mid u_{j} \in\{0,1\}\right.$ for $\left.1 \leqslant j \leqslant n\right\}$. $F Q_{n}$ is also denoted by $F Q_{n}=Q_{n} \cup E_{a}$. The 2-dimensional and 3-dimensional folded hypercubes are illustrated in Fig. 1.

The following lemmas are useful to our main proof.
Xu et al. [41] and Cheng et al. [5] respectively got the following three lemmas in $F Q_{n}$.
Lemma 1 [41]. $F Q_{n}-E_{i} \cong Q_{n}$ for $i \in\{1,2, \ldots, n, a\}$.

Lemma 2 [41]. Let $F F_{e}$ be the set of faulty edges in $F Q_{n}$ with $\left|F F_{e}\right| \leqslant n-1$. Then every fault-free edge lies on a fault-free cycle of every even length from 4 to 2^{n} and every odd length from $n+1$ to $2^{n}-1$ if n is even.

https://daneshyari.com/en/article/6857739

Download Persian Version:
https://daneshyari.com/article/6857739

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: xincheng168@126.com, athenacheng168@126.com (D. Cheng), rxhao@bjtu.edu.cn (R.-X. Hao), yqfeng@bjtu.edu.cn (Y.-Q. Feng).

