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a b s t r a c t

In this paper we define different types of convergences for sequences of multifunctions and
establish relationships among them. Using the convergence in fuzzy measure we obtain a
topological structure on a space of multifunctions.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Beginning with Choquet [6], Zadeh [37] and Sugeno [33], the fuzzy theory proved its importance and utility in numerous
applications (e.g. [1,20–23,34]).

In set-valued analysis, the theory of measurable multifunctions has various applications in statistics, mathematical
economics, fixed point problems, theory of control, optimization, information systems, modeling birth-and-growth
processes, game theory (e.g. [2,4,12–14,26,28,29]). The theory of multifunctions or set-valued functions (i.e. functions with
values in a family of sets) has been studied by many authors (e.g. [3,7–11,15–18,27,30–32]). For (single-valued) real or vector
functions f : T ! X, one usually deals with the absolute value or the norm. Passing to the theory of multifunctions (i.e.
functions with values in P0ðXÞ, where P0ðXÞ is the family of all nonempty subsets of X) arises difficult aspects since the
definitions of P0ðXÞ-valued cannot be reduced to that of X-valued. This happens because if X is a normed space, then
P0ðXÞ is not a linear space: in fact, it is not a group with respect to the usually addition ‘‘þ’’ defined by

M þ N ¼ fxþ yjx 2 M; y 2 Ng; for every M;N 2 P0ðXÞ:

So, special considerations have to be introduced. For this reason, in the present paper different set-valued settings will be
made using a set-norm on P0ðXÞ (see Definition 1).

In this paper we define different types of convergences for sequences of multifunctions and establish some relationships
among them. Then we introduce a topology on a space of multifunctions via neighborhood systems defined by convergence
in fuzzy measure for sequences of multifunctions.

The paper is organized as follows: in Section 2 we give some preliminaries. In Section 3 we define different types of
convergences for sequences of multifunctions and establish some relationships among them. In Section 4 we introduce a
topology on a space of multifunctions, offering a work frame in studying this important field of set-valued analysis. The
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topology is defined using convergence in a fuzzy measure for sequences of multifunctions. Section 5 presents some
applications and Section 6 is for the conclusion.

2. Preliminaries

In this section some useful definitions and remarks are presented.
The set of all real numbers is denoted by R. We denote N� ¼ N n f0g, where N is the set of all nonnegative integers.
Let X be a linear space and P0ðXÞ the family of all nonempty subsets of X. If ’’6’’ is an order relation on P0ðXÞ, then we

denote this by ðP0ðXÞ;6Þ. For example, the usual set inclusion ’’ # ’’ is an order relation on P0ðXÞ, that will be denoted by
ðP0ðXÞ; # Þ. For every E; F 2 P0ðXÞ and a 2 R, denote Eþ F ¼ fxþ yjx 2 E; y 2 Fg and aE ¼ faxjx 2 Eg.

Definition 1. ([8]) Let X be a linear space. A function j � j : P0ðXÞ ! ½0;þ1� is called a set-norm on P0ðXÞ if:

(i) jEj ¼ 0() E ¼ f0g, for E 2 P0ðXÞ;
(ii) jaEj ¼ jaj � jEj;8a 2 R;8E 2 P0ðXÞ (with the convention 0ðþ1Þ ¼ 0);

(iii) jEþ Fj 6 jEj þ jFj;8E; F 2 P0ðXÞ.

Definition 2. A set-norm j � j on ðP0ðXÞ;6Þ is called monotone if for every sets E; F 2 P0ðXÞ; E 6 F ) jEj 6 jFj.

Remark 3.

I. If X is a linear space and j � j : P0ðXÞ ! ½0;þ1� is a set-norm on P0ðXÞ such that jfxgj < þ1;8x 2 X then the function
defined by kxk ¼ jfxgj;8x 2 X, is a norm on X.

II. If ðX; k � kÞ is a normed space, then the function jEjs ¼ sup
x2E
kxk is a monotone set-norm on ðP0ðXÞ; # Þ, called the supre-

mum set-norm on P0ðXÞ.
III. Let X be a linear space and k � k1 a norm on X. Then, according to II, we obtain a monotone set-norm on ðP0ðXÞ; # Þ,

defined by jEjs ¼ sup
x2E
kxk1 for every E 2 P0ðXÞ. By I, we obtain kxk2 ¼ jfxgjs, for every x 2 X. It results that

kxk2 ¼ kxk1 for every x 2 X.
IV. Let X be a linear space and j � j1 a monotone set-norm on ðP0ðXÞ; # Þ so that jfxgj1 < þ1, for every x 2 X. By I, the

function defined by kxk ¼ jfxgj1 is a norm on X. According to II, we obtain another set-norm
jEj2 ¼ sup

x2E
kxk ¼ jEjs;8E 2 P0ðXÞ. Then jEj2 6 jEj1, for every E 2 P0ðXÞ (the inequality may be strict as we can see in

Example 4). Indeed, let E 2 P0ðXÞ. Since the set-norm is monotone, we have kxk ¼ jfxgj1 6 jEj1, for every x 2 E. Now,
we obtain jEj2 ¼ jEjs ¼ sup

x2E
kxk 6 jEj1.

Moreover, if ðX; k � kÞ is a normed space and jEj1 ¼ sup
x2E
kxk, then jEj2 ¼ jEj1;8E 2 P0ðXÞ.

Example 4. Let X ¼ R and for every E 2 P0ðRÞ, let

jEj1 ¼
max

x2E
jxj; if E is finite

þ1; if E is not finite:

(

Then j � j1 is a monotone set-norm on ðP0ðRÞ; # Þ. By Remark 3-IV, we obtain another monotone set-norm on ðP0ðRÞ; # Þ, that
is jEj2 ¼ sup

x2E
jxj, for every E 2 P0ðRÞ. Let E ¼ ð�5;4�. Then jEj2 ¼ 5 < þ1 ¼ jEj1.

In the sequel, let T be a nonempty set, PðTÞ the family of all subsets of T and C#PðTÞ a ring of subsets of T (i.e.
C – ;;A [ B 2 C and A n B 2 C for every A;B 2 C).

Definition 5. A set function l : C ! ½0;þ1� is called:

(i) monotone if lðAÞ 6 lðBÞ, for every A;B 2 C, with A # B.
(ii) a fuzzy measure if l is monotone and lð;Þ ¼ 0.

(iii) strongly order-continuous (shortly strongly o-continuous) if limn!1lðAnÞ ¼ 0, for every ðAnÞn2N � C with Anþ1 # An for all

n 2 N;
T1

n¼0
An ¼ A;A 2 C and lðAÞ ¼ 0 (denoted by An & A).

(iv) autocontinuous from above if limn!1lðA [ BnÞ ¼ lðAÞ, for every A 2 C and ðBnÞn2N � C with limn!1lðBnÞ ¼ 0.
(v) autocontinuous from below if limn!1lðA n BnÞ ¼ lðAÞ for every A 2 C and ðBnÞ � C with Bn # A for every n 2 N and

limn!1lðBnÞ ¼ 0.
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