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a b s t r a c t

Clustering is one of the most widely used method in data mining with applications in vir-
tually any domain. Its main objective is to group similar objects into the same cluster,
while dissimilar objects should belong to different clusters. In particular k-means cluster-
ing, as member of the partitioning clustering family, has obtained great popularity. The
classic (hard) k-means assigns an object unambiguously to one and only one cluster. To
address uncertainty soft clustering has been introduced using concepts like fuzziness, pos-
sibility or roughness. A decade ago Lingras and West introduced a k-means approach based
on the interval interpretation of rough sets theory. In the past years their rough k-means
has gained increasing attention. In our paper, we propose a refined rough k-means algo-
rithm that utilizes Laplace’s principle of indifference to calculate the means. As we will dis-
cuss this provides a sounder justification for the impacts of the objects in the
approximations in comparison to established rough k-means algorithms. Furthermore,
the weighting in the mean function is based on individual objects rather than on aggre-
gated sub-means. In experiments, we compare the refined algorithm to related approaches.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The objective of clustering is to group similar objects into the same cluster, while dissimilar objects should belong to dif-
ferent clusters. In particular, k-means clustering has attained great popularity [18,31]. The classic (hard) k-means [30] as-
signs one object unambiguously to one and only one cluster. To address uncertainty, like overlapping clusters, soft
clustering has been introduced. Prominent examples are Bezdek’s fuzzy c-means [6,7] as a generalization of Dunn’s ISODATA
[13] and Krishnapuram and Keller’s possibilistic c-means [21].

A decade ago Lingras and West [27,28] introduced rough k-means derived from the interval interpretation of rough sets
theory. In the past years their algorithm has gained increasing attention. Survey on recent developments of rough clustering
can be found in Lingras and Peters [25,26].

A detailed discussion of the relationship between rough clustering, further soft clustering algorithms and classic k-means
would go beyond the scope of our paper. See Lingras et al. [29] for insights on the relationship between classic k-means and
rough k-means. For a more general discussion of soft clustering extensions and derivatives the reader is referred to Peters
et al. [44].

In our paper, we propose a refined rough k-means algorithm that utilizes Laplace’s principle of indifference [22] to cal-
culate the means. Furthermore, the weighting in the mean function is based on the objects instead of the sub-means derived
from the approximations.

http://dx.doi.org/10.1016/j.ins.2014.02.073
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Address: Munich University of Applied Sciences, Department of Computer Science and Mathematics, Munich, Germany. Tel.: +49 8912653709.
E-mail address: georg.peters@cs.hm.edu

Information Sciences xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

Please cite this article in press as: G. Peters, Rough clustering utilizing the principle of indifference, Inform. Sci. (2014), http://dx.doi.org/
10.1016/j.ins.2014.02.073

http://dx.doi.org/10.1016/j.ins.2014.02.073
mailto:georg.peters@cs.hm.edu
http://dx.doi.org/10.1016/j.ins.2014.02.073
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins
http://dx.doi.org/10.1016/j.ins.2014.02.073
http://dx.doi.org/10.1016/j.ins.2014.02.073


The proposed algorithm has five distinct advantages in comparison to established rough k-means algorithms. First, it is
more robust with respect to the setting of the initial parameters than Lingras and West’s original approach. Second, the im-
pact of an object in a lower approximation on a mean function is higher than the impact of a boundary object. Third, the
impact of a boundary object is shared competitively among the clusters. Fourth, the mean function does not have any param-
eters that need to be set. Fifth, the weighting in the mean function is derived from Laplace’s principle of indifference; that is,
it stands on firm common ground.

The principle of indifference is often abbreviated by PI; this made us to take the phonetically similar Greek letter p to
label the proposed algorithm as p rough k-means (pRKM).

The remainder is organized as follows. In the next section we discuss original rough k-means and its refinements that are
relevant to our paper. Then, in Section 3, we propose p rough k-means and discuss its properties. In Section 4 we conduct
experiments on artificial and real data. Section 5 concludes the paper.

2. Foundations of rough k-means clustering

2.1. Rough k-means algorithms in the context of rough sets theory

2.1.1. Rough sets theory
Pawlak [39] proposed rough sets in the beginning of the eighties of the last century. Since then rough sets theory has

gained increasing attention and has established itself as a core part of granular computing (see [40] for a recent survey
on granular computing). The basic idea of rough sets is to describe a set by two approximations, its lower approximation
and its boundary. The lower approximation and the boundary together form the upper approximation of a set. While objects
in the lower approximation surely belong to the set, objects in its boundary are possible members only – they may or may
not belong to the set. Reasons for an unclear membership of a boundary object include missing or contradicting information.
Hence, rough sets theory is a powerful concept to describe a kind of uncertainty that is characteristic for many real life sit-
uations. For introductions to rough sets theory the reader is referred to, e.g., Grzymala-Busse [15] or Yao and Slezak [54].

2.1.2. Rough clustering
Rough clustering as introduced by Lingras and West [27,28] is derived from the interval interpretation of rough sets in

contrast to the original set-based rough sets theory. See Yao [53] for a discussion on these two views on rough sets. Rough
clustering utilizes three basic properties of original rough sets theory [38]. They are:

� If and only if an object is member of a lower approximation of a cluster it is not a member of any other cluster.
� The lower approximation of a cluster is a subset of its upper approximation.
� If and only if an object does not belong to any lower approximation it is member of at least two upper approximations.

In Fig. 1 all possible regions for a three clusters configuration are depicted. The boxes show the upper approximations of
the clusters C1;C2 and C3.1 We define Bxn2Ri

as set of the upper approximations an object xn (n ¼ 1; . . . ;N) in region Ri

(i ¼ 1; . . . ;7) is member of. jBxn2Ri
j is the cardinality of Bxn2Ri

. For example, an object in region R6 is member of the upper approx-
imations of the clusters C2 and C3. Hence, we get Bxn2R6 ¼ fC2;C3g and jBxn2R6 j ¼ 2. Obviously, for objects in lower approxima-
tions jBxn2Ri

j ¼ 1 holds, while for boundary objects jBxn2Ri
jP 2.

Generally, for three clusters seven regions can be distinguished (see Fig. 1). For illustrative purposes we take a closer look
at cluster C1 only. It consists of the regions R1;R2;R3, and R4.

� Region R1 is exclusively covered by the upper approximation of C1. Hence, this region represents the lower approximation
of C1. The lower approximation is also regarded as positive region of C1, since its members surely belong to the cluster.
We get Bxn2R1 ¼ fC1g and jBxn2R1 j ¼ 1.
� Region R2 is defined by the overlapping upper approximations of C1 and C2. Hence, the membership of an object xn in R2 is

unclear, since it could belong to C1 or C2. The region is called boundary region and consists of the boundaries of C1 and
C2 : Bxn2R2 ¼ fC1;C2g and jBxn2R2 j ¼ 2. In R3 all three upper approximations overlap. We get Bxn2R3 ¼ fC1;C2;C3g and
jBxn2R3 j ¼ 3. In R4 the upper approximations of C1 and C3 overlap (Bxn2R4 ¼ fC1;C3g and jBxn2R4 j ¼ 2).
� The regions R5;R6 and R7 are not covered by the upper approximation of C1. Hence, objects in these regions surely do not

belong to C1. So, in contrast to the positive region (lower approximation), this region is referred to as negative region of
cluster C1.

In our paper, the set of objects belonging to the lower approximation of Ck is denoted as Ck and the upper approximation
as Ck. The boundary of Ck is indicated by a hat diacritic: cCk . This hat diacritic is motivated by the unclear status of the

1 The arrangement of the clusters in rectangle shapes has been chosen for illustrative reasons only. For visual clarity the boxes representing the lower
approximations are displayed with offsets.
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