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a b s t r a c t

In this paper we describe a cryptanalysis of a key exchange scheme recently proposed by
Álvarez, Tortosa, Vicent and Zamora. The scheme is based on exponentiation of block
matrices over a finite field of prime order, and its security is claimed to rely in the hardness
of a discrete logarithm problem in a subgroup of GLnð pÞ. However, the proposal’s design
allows for a clean attack strategy which exploits the fact that exponents are at some point
added instead of multiplied as in a standard Diffie–Hellman construction. This strategy is
moreover successful for a much more general choice of parameters than that put forward
by Álvarez et al.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The well known Diffie–Hellman key exchange scheme [5] was the first published public key cryptographic protocol,
allowing two users communicating over a public insecure channel to agree on a common shared secret key. One of the most
common platform groups candidates to implement this protocol is the multiplicative group of a finite field. In this case, the
problem of obtaining the shared key from the exchanged data is trivially solved if one can solve the discrete logarithm
problem (DLP) in the finite field, but this is considered to be a computationally hard problem for appropriately chosen
parameters. Some other groups have been proposed as platform groups for Diffie–Hellman-like protocols, such as the group
of non-singular matrices over a finite field [10] or the group of points of an elliptic curve [6,9].

Recently, Álvarez et al. [1,2] proposed a key exchange protocol where the platform group is the 2� 2 block upper trian-
gular invertible matrices over a finite field. Essentially, two high order public matrices M1 and M2 are generated in this group
(the authors in [1,2] suggest using companion matrices of primitive polynomials in blocks ð1;1Þ and ð2;2Þ to maximize the
order). Then the two users choose secret exponents ðr; sÞ and ðv ;wÞ respectively, and exchange the matrices Mr

1Ms
2 and

Mv
1 Mw

2 . The shared key is the ð1;2Þ block of the matrix Mrþv
1 Msþw

2 . This is done mainly in order to avoid a reduction from
the DLP in the matrix group to the DLP in the base field (see the Related work paragraph).
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Related work. The first attempt to use matrices over a finite field in a key exchange scheme was made by Odoni, Varad-
harajan and Sanders in 1984 [10]. They use an invertible matrix as a group generator and then proceed as in the usual Diffie–
Hellman key exchange protocol. In order to get a high enough order for the generating matrix, they define a block diagonal
matrix, where the blocks are similar to companion matrices of primitive polynomials (in fact, as pointed out in [7], the
authors incorrectly use irreducible polynomials instead of primitive polynomials).

After that, Menezes and Vanstone proved in 1992 [7] that the DLP in the cyclic group generated by one of these block
matrices can be efficiently reduced to the DLP in an extension of the base field, thus showing that this kind of groups offers
no advantage over finite fields. In a subsequent paper of 1997, Menezes and Wu [8] extended this reduction to the general
case, that is, they showed that the DLP in the general linear group GLnð pÞ can be efficiently reduced to the DLP in certain
‘‘small’’ extension of the base field.

In order to avoid the Menezes and Wu reduction, Climent et al. [3] proposed in 2006 another matrix based key exchange
protocol (CFVZ protocol). They use 2� 2 block upper triangular matrices, where the diagonal blocks have integer entries
while the (1,2) block has entries in the set of rational points of an elliptic curve. In this case the two parties of the protocol
interchange the (1,2) block of a randomly chosen power of one of these matrices. The shared key is the (1,2) block of another
matrix which they can compute with their secret data. In 2007, Climent et al. [4] published a cryptanalysis of this last pro-
tocol. They showed how the problem of computing the shared key can be efficiently reduced to solving several DLP’s in the
group associated to the elliptic curve. They also proved how solving simultaneously these DLP’s problems is essentially as
hard as solving one single DLP. Therefore they conclude that the CFVZ protocol offers no advantage over working in the ellip-
tic curve group.

Our contribution. In this paper we exhibit a security weakness in (a generalization of) the key exchange protocol presented
in [2,1]. This comes from the fact that the problem faced by a passive adversary is not that closely related to DLP, for the
computation made on the secret exponents is actually addition (instead of multiplication). This simple observation allows
us to describe a simple strategy to derive the shared key from the public information if the matrices M1 and M2 are both
diagonalizable. Furthermore, if just one of them is diagonalizable, we also evidence the shared key can be computed by a
passive adversary. Finally, we are able to point out different attack strategies that may also succeed even if none of the
two matrices are diagonalizable. All in all, our discussion evidences it is not too realistic to hope for a secure construction
of a key exchange protocol from the ideas exposed in [2,1].

Paper outline. We start by recalling some of the most relevant mathematical facts related to the scheme’s parameter gen-
eration in Section 2 (underlying group structure, and how to generate high order elements from it), and we briefly recall the
proposed scheme in Section 3. Section 4 contains our main result, i.e., the attack for the case M1; M2 diagonalizable, whereas
Section 5 presents some extensions of the attack to the case when only one of the two matrices is non-diagonalizable, and
some facts that render the scheme insecure even if both matrices are non-diagonalizable. For the shake of readability, quite a
few technical results have been moved to two Appendices A and B.

2. Preliminaries

The following is a description of the underlying group structure. We describe some properties and simple consequences
of the definitions, and recall the method proposed in [1,2] for generating high order elements.

2.1. Underlying group structure

Given a prime number p and n; l 2 N, consider the subgroup of GLnþlð pÞ under matrix multiplication defined by

Hðp;n; lÞ ¼
A X

0 B

� �
: A 2 GLnð pÞ; B 2 GLlð pÞ; X 2 Matn�lð pÞ

� �

We simply write H when p, n and l are fixed. The following are some simple consequences of the definition:

1. If M 2 H and h P 0 then Mh ¼ Ah XðhÞ

0 Bh

� �
with

XðhÞ ¼
0 if h ¼ 0Ph

i¼1Ah�iXBi�1 if h P 1

�

2. If a; b P 0 then XðaþbÞ ¼ AaXðbÞ þ XðaÞBb

3. If M ¼ A X
0 B

� �
2 H then the characteristic polynomials pM ; pA and pB of M; A and B respectively, are related by

pMðkÞ ¼ pAðkÞ � pBðkÞ. Hence, k is an eigenvalue of M if and only if it is an eigenvalue of A or B and moreover, since A
and B are invertible k is always nonzero.
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