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a b s t r a c t

Homogeneous rotation symmetric Boolean functions have been extensively studied in
recent years because of their applications in cryptography. Little is known about the basic
question of when two such functions in n variables are affine equivalent. The simplest case
of quadratic rotation symmetric functions which are generated by cyclic permutations of
the variables in a single monomial was only settled in 2009, and the first substantial pro-
gress on the much more complicated cubic case came in 2010. In this paper, we show that
much of the work on the cubic case can be extended to the quartic case. We also prove an
exact formula for the number and sizes of the affine equivalence classes when n is a prime.

� 2013 Elsevier Inc. All rights reserved.

1. Affine equivalence of quartic rotation symmetric Boolean functions

Boolean functions have many applications in coding theory and cryptography. A detailed account of the latter applica-
tions can be found in the book [7]. If we define Vn to be the vector space of dimension n over the finite field GF(2) = {0,
1}, then an n variable Boolean function f(x1, x2, . . ., xn) = f(x) is a map from Vn to GF(2). Every Boolean function f(x) has a un-
ique polynomial representation (usually called the algebraic normal form [7, p. 6]), and the degree of f is the degree of this
polynomial. A function of degree 61 is called affine, and if the constant term is 0 such a function is called linear. If every
term in the algebraic normal form of f has the same degree, then the function is homogeneous. All functions studied in this
paper will be homogeneous. We let Bn denote the set of all Boolean functions in n variables, with addition and multiplication
done mod 2.

We say a Boolean function f(x) in Bn is rotation symmetric if the algebraic normal form of the function is unchanged by any
cyclic permutation of the variables x1, x2, . . ., xn. In recent years, rotation symmetric functions have proven to be very useful
in several areas of cryptography [7, pp. 108–118]. This has led to many papers which study different aspects of the theory of
rotation symmetric functions (see, for example, the references in [7, pp. 108–118] and the recent papers [3,5,6,9,10,13,14].

We say that two Boolean functions f(x) and g(x) in Bn are affine equivalent if g(x) = f(Ax + b), where A is an n by n nonsin-
gular matrix over the finite field GF(2) and b is an n-vector over GF(2). We say f(Ax + b) is a nonsingular affine transformation
of f(x).

An important basic question is to decide when two Boolean functions are affine equivalent. Early work on the coding
theory interpretation of this question used ad hoc methods to settle the problem for small numbers of variables (see
[1,12]), but our concern is analyzing the case of fixed degree and an arbitrary number n of variables. There is some more
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recent work on testing affine equivalence (for example, [2,8]), but this gives very little progress on the general problem. The
general problem seems extremely difficult, so current research is devoted to studying special cases, in particular the rotation
symmetric functions. The simplest case of quadratic rotation symmetric functions in n variables which are generated by cyc-
lic permutations of the variables in a single monomial was only settled in 2009 (see [11]). Affine equivalence for cubic rota-
tion symmetric Boolean functions was recently studied by the first author [4], and further progress was made in [3]. In this
paper we extend the work of [4] to affine equivalence for quartic rotation symmetric Boolean functions, concerning which
there is almost nothing in the literature. We shall consider the simplest of such functions f, namely those generated by cyclic
permutations of the variables in a single monomial. We call these the quartic monomial rotation symmetric (MRS) functions.
Thus for some j, k and l, 1 < j < k < l, we have

f ðxÞ ¼ x1xjxkxl þ x2xjþ1xkþ1xlþ1 þ � � � þ xnxj�1xk�1xl�1: ð1Þ

We shall use the notation (1, j, k, l) for the function f(x) in (1), no matter how the terms on the right-hand side are written
(so the order of the terms, and of the 4 variables in each term, does not matter). If (1, j, k, l) is written in the form (1) (so the
first subscripts in the n terms are 1, 2, . . ., n in order, and the other three subscripts in order each give cyclic permutations of
1, 2, . . ., n, as shown), we say f is written in standard form. Note we do not require j < k < l, so there are six ways to write f(x) in
standard form. If we specify the representation of f(x) ((1, j, k, l), (1, j, l, k), (1, k, j, l), (1, k, l, j), (1, l, j, k), or (1, l, k, j)), then the
standard form is unique. Clearly each subscript j, 1 6 j 6 n, appears in exactly 4 of the terms in any representation of f(x); we
shall call these four terms the j-terms of f. We shall use the notation (see Tables 1–8)

½i; j; k; l� ¼ xixjxkxl ð2Þ

as shorthand for the monomial on the right-hand side; note that the order of the variables matters, so, for example, the 24
permutations of i, j, k, l give 24 different representations of form (2) for the same monomial xixjxkxl.

Definition 1.1. If n is even, it is possible for the representation (1) to contain only n
2 or (if n is divisible by 4) n

4 distinct terms. If
this happens, we modify the definition of the function in (1) so that only the distinct terms are used. We define the ‘‘short
quartic functions’’ to be the ones with fewer than n terms (so functions with n

2 and n
4 terms are both ‘‘short’’) and we define the

‘‘very short quartic functions’’ to be the ones with n
4 terms. Thus every very short function is also a short function.

Lemma 1.2. If n is divisible by 2, there are short quartic functions of the form 1; i; n
2þ 1; iþ n

2

� �
where 2 6 i 6 n

4

� �
þ 1. If n is divis-

ible by 4 and i ¼ n
4þ 1, we have a very short quartic function. These n

4

� �
functions give all the short quartic functions in n variables.

Proof. If n is divisible by 2, then the function 1; i; n
2þ 1; iþ n

2

� �
where 2 6 i 6 n

4

� �
þ 1 is exceptional because then the repre-

sentation (1) has only n
2 distinct terms, or only n

4 distinct terms if n is divisible by 4 and i ¼ n
4þ 1. Thus in these cases the rep-

resentation (1) reduces to a sum of only n
2 or n

4 terms. Also 1; i; n
2þ 1; iþ n

2

� �
is the same function as

1; n
2þ 2
� �

� i; n
2þ 1;nþ 2� i

� �
for any n, so there are n

4

� �
short quartic functions in n variables. h

Our goal is to study the affine equivalence classes for quartic rotation symmetric functions (1, j, k, l). In order to do this, we
need to be able to identify all of the distinct functions (1, j, k, l). We define

Dn ¼ fð1; j; k; lÞ : j < k < l 6 n; every function ð1; j; k; lÞ is represented by
the quadruple 1; j; k; l with least j; and given that; with least k;

and given that; with least lg:

Every quartic monomial rotation symmetric function f is equal to exactly one function (1, j, k, l) in Dn, but of course f is also
equal to (1, p, q, r), where [1, p, q, r] is any of the six 1-terms in (1, j, k, l).

Clearly we can determine Dn by making a list of all of the functions (1, j, k, l) with 1 < j < k < l 6 n in lexicographic order
and standard form, and then crossing out any function in the list which has a 1-term appearing in any earlier function in the
list. The number of distinct functions which remain after this is given in the following lemma (as usual, jSj denotes the num-
ber of elements in the set S).

Lemma 1.3. If n is odd, then jDnj = (n � 1)(n � 2)(n � 3)/24; if n � 2 mod 4, then jDnj = (n � 2)(n2 � 4n + 6)/24; if n � 0 mod 4,
then jDnj = n(n2 � 6n + 14)/24.

Proof. This counting problem reduces to a well-known counting problem for n-bead necklaces with 2 possible colors for the
beads. The connection was first noted by Stănică and Maitra [15, p. 1570]. The lemma follows from an explicit computation
for our special case with n = 4. h

Extending the definition for the cubic case given in [4], we define the notion of pattern for any term [i, j, k, l]. The pattern of
[i, j, k, l] is the integer vector

ðj� i Mod n; k� i Mod n; l� i Mod n; l� j Mod nÞ: ð3Þ
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