
Pattern mining of cloned codes in software systems

Wei Qu a,⇑, Yuanyuan Jia b, Michael Jiang c

a Graduate University of Chinese Academy of Sciences, 80 East Zhongguancun Road, Haidian, Beijing 100190, PR China
b Bioengineering Department, University of Illinois, Chicago, IL 60607, USA
c Motorola Labs, Motorola Inc., Schaumburg, IL 60196, USA

a r t i c l e i n f o

Article history:
Received 7 March 2008
Received in revised form 26 February 2010
Accepted 19 April 2010
Available online 30 April 2010

Keywords:
Pattern mining
Software clone detection
Software reuse detection
Software engineering

a b s t r a c t

Pattern mining of cloned codes in software systems is a challenging task due to various
modifications and the large size of software codes. Most existing approaches adopt a
token-based software representation and use sequential analysis for pattern mining of
cloned codes. Due to the intrinsic limitations of such spatial space analysis, these methods
have difficulties handling statement reordering, insertion and control replacement.
Recently, graph-based models such as program dependent graph have been exploited to
solve these issues. Although they can improve the performance in terms of accuracy, they
introduce additional problems. Their computational complexity is very high and dramati-
cally increases with the software size, thus limiting their applications in practice. In this
paper, we propose a novel pattern mining framework for cloned codes in software systems.
It efficiently exploits software’s spatial space information as well as graph space informa-
tion and thus can mine accurate patterns of cloned codes for software systems. Preliminary
experimental results have demonstrated the superior performance of the proposed
approach compared with other methods.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Software clone detection has received a significant amount of attention in recent years due to its numerous applications
such as source code plagiarism detection, open source localization, intellectual property infringement uncovering, software
debugging, etc. [1–3]. Code clone and reengineering is a common practice in development of software systems. It is widely
used by developers to reduce programming efforts and shorten developing time. However, such kind of software reuse may
introduce additional problems including quality instability, intellectual property infringement, redundancy increase, and has
possibilities to make the software less efficient [1–3]. How to effectively and efficiently discover these cloned codes, analyze
their patterns and thus optimize the software structure becomes a very important issue.

Pattern mining has received much attention recently due to its wide applications [4–6]. Pattern mining of exactly cloned
software codes is much easier since it can be solved reasonably well by using regular text search techniques. However, pat-
tern mining of cloned codes for software with modifications is a more difficult task [1,2]. In addition to all of the challenging
problems inherent to text searching, pattern mining of cloned codes must deal with alterations from simple modifications
such as reformatting, comment changes, identifier renaming to more complicated changes such as statement reordering,
insertion, and control logic changes, some of which may be very hard for human beings to identify because of tricky varia-
tions and large software size. Our experience with large software systems showed that cloned software modules often ap-

0020-0255/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ins.2010.04.022

⇑ Corresponding author.
E-mail addresses: weiqu@gucas.ac.cn, quweiusa@gmail.com (W. Qu), yjia2@uic.edu, jiayuanusa@gmail.com (Y. Jia), machiel.jiang@motorla.com (M.

Jiang).

Information Sciences 259 (2014) 544–554

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2010.04.022&domain=pdf
http://dx.doi.org/10.1016/j.ins.2010.04.022
mailto:weiqu@gucas.ac.cn
mailto:quweiusa@gmail.com
mailto:yjia2@uic.edu
mailto:jiayuanusa@gmail.com
mailto:machiel.jiang@motorla.com
http://dx.doi.org/10.1016/j.ins.2010.04.022
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


pear in different locations (in different files, directories, and product lines). Without tool support, manual identification is
impractical.

Most early efforts for pattern mining of cloned codes relied on the use of tokenization and spatial space analysis, where
only code location information such as sequential line indices or file paths is exploited. Tokens are the basic units in a pro-
gramming language, such as keywords, operators, parentheses, etc. Such methods usually consist of two stages: firstly, a par-
ser or a lexical analyzer filters a program into a sequence of tokens; then a sequential analysis method is used to compare
token sequences and detect similar counterparts. A string-based approach was proposed by Baker in [1]. Wise [7] proposed a
YAP algorithm, which relies on the ‘‘sdiff’’ function in UNIX to compare lists of tokens for the longest common sequence of
tokens. Gitchell and Tran presented a SIM plagiarism detection system comparing token sequences using a dynamic pro-
gramming string alignment technique in [8]. JPlag [3] and MOSS [9] are two widely used token-based tools for programming
plagiarism detection, especially in academic area. Recently, Kamiya et al. [10] proposed CCFinder, a clone detection tech-
nique with transformation rules and a token-based comparison. Li et al. [11] developed a tool for finding copy-paste and re-
lated defects in operating system code. It is based on frequent subsequence mining and tokenization techniques. Chen et al.
designed a token-based system called SID in [2]. It uses a metric based on Kolmogorov complexity to measure the shared
information between two programs.

Although token-based sequential analysis methods can handle format changes and identifier renaming since blanks and
comments are ignored by the parser and variables of the same type are filtered into the same tokens, they have intrinsic
limitations for pattern mining of cloned codes due to using only spatial space analysis. For example, reordered or inserted
statements can break a token sequence which may otherwise be regarded as a duplicate to another sequence. These limita-
tions have recently inspired researchers to exploit other space information. Baxter et al. [12] proposed a tool that transforms
source code into abstract syntax trees (AST) and detects code reuse by finding identical subtrees. However, it may introduce
many false positives because two code segments with same syntax subtrees may not be necessarily reused code. Komondoor
et al. proposed to use program dependence graph (PDG) and program slicing to find isomorphic subgraphs and code dupli-
cation. Another PDG-based approach was proposed by Krinke in [13]. This notion is carried further in the work of Liu et al.
[14], which improves the plagiarism search efficiency by a PDG-based GPlag algorithm. This work provides a very promising
direction to resolve the problems of pattern mining of cloned software codes in logic-domain analysis. However, since gen-
eral subgraph isomorphism is NP-complete [15], these logic-domain approaches suffer from the exponentially increased
computational complexity with the size of software code, and thus limit their use in practice. Although a lossy filter may
partially remedy this issue, it does not fundamentally solve the computational complexity of the graph-based algorithms
and may introduce a lot more false negatives and false positives.

In this paper, we extend the approach presented in [16] and propose a new framework for pattern mining of cloned codes
using a joint space-logic-domain analysis. In particular, it discards the software tokenization, which sacrifices too much
information to tolerate identifier renaming. Instead, it exploits graph-based analysis for software representation. Efficient
spatial fingerprinting is exploited to generate ‘‘seed matches’’. Graph matching is also used to recover lost information
and enhance mining accuracy. Compared with our previous work in [16], the new approach is particularly designed for pat-
tern mining within a single large-scale software program instead of software reuse detection between two programs. More-
over, this paper extends our previous work by exploiting a combination of two filters, one lossy filter and one lossless filter,
in spatial pattern search. Finally, both false positive pruning and pattern composition are further adopted to improve the
pattern mining performance. The rest of the paper is organized as follows: In Section 2, we give a brief description of pro-
gram dependence graph. In Section 3, we present the proposed pattern mining framework for cloned software codes. Exper-
imental results on software systems are shown in Section 4. Finally, we provide a summary in Section 5.

2. Program dependence graph

Since we use program dependence graph in the proposed framework, we briefly summarize it in this section.
The program dependence graph (PDG) [17] represents a program as a directed and labeled graph in which the nodes are

statements and predicate expression such as variable declarations, assignments, etc., and the edges incident to a node rep-
resent both data values and control conditions [18]. Following the notation in [18,14], we define a PDG as follows:

The program dependence graph G for a subroutine is a 4-tuple element G = (V,E,l,d), where V is the set of program nodes,
E # V � V is the set of edges, l is the set of nodes’ types, and d is the edges’ types.

Fig. 1 illustrates an example of PDG, where the right column is the associated code. As we can see, there are three sub-
routines. The nodes in the PDG represent individual statements and predicates of a subroutine. The edges represent the data
and control dependence among statements and predicates. Specifically, the solid lines are control flow, and the dash lines are
data flow.

Similar to [14,13], we also adopt subgraph isomorphism for the analysis of PDGs in our pattern mining framework. How-
ever, the proposed method distinguishes itself from these two references in the following aspects: (1) As presented in Sec-
tion 3, our approach exploits both spatial pattern mining and graph-based pattern mining while [13] and [14] all use PDG-
based pattern search only. (2) As discussed in Section 1, these two logic-domain approaches [13,14] suffer from the expo-
nentially increased computation complexity due to the NP-complete problem. Nevertheless, the computation complexity
of the proposed method is much lower because of a combination of PDG transformation and spatial pattern mining. (3)

W. Qu et al. / Information Sciences 259 (2014) 544–554 545



Download English Version:

https://daneshyari.com/en/article/6858552

Download Persian Version:

https://daneshyari.com/article/6858552

Daneshyari.com

https://daneshyari.com/en/article/6858552
https://daneshyari.com/article/6858552
https://daneshyari.com

