
Information Systems 78 (2018) 40–57

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

An efficient similarity-based approach for comparing XML

documents

Alessandreia Oliveira

a , b , ∗, Gabriel Tessarolli a , Gleiph Ghiotto

a , b , Bruno Pinto

a ,
Fernando Campello

a , Matheus Marques b , Carlos Oliveira

b , Igor Rodrigues a ,
Marcos Kalinowski c , Uéverton Souza a , Leonardo Murta a , Vanessa Braganholo a

a Instituto de Computação, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil
b Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil
c Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil

a r t i c l e i n f o

Article history:

Received 14 October 2016

Revised 27 December 2017

Accepted 2 July 2018

Keywords:

XML

Diff

Match

Similarity

a b s t r a c t

XML documents are widely used to interchange information among heterogeneous systems, ranging from

office applications to scientific experiments. Independently of the domain, XML documents may evolve, so

identifying and understanding the changes they undergo becomes crucial. Some syntactic diff approaches

have been proposed to address this problem. They are mainly designed to compare revisions of XML doc-

uments using explicit IDs to match elements. However, elements in different revisions may not share IDs

due to tool incompatibility or even divergent or missing schemas. In this paper, we present Phoenix, a

similarity-based approach for comparing revisions of XML documents that does not rely on explicit IDs.

Phoenix uses dynamic programming and optimization algorithms to compare different features (e.g., ele-

ment name, content, attributes, and sub-elements) of XML documents and calculate the similarity degree

between them. We compared Phoenix with X-Diff and XyDiff, two state-of-the-art XML diff algorithms.

XyDiff was the fastest approach but failed in providing precise matching results. X-Diff presented higher

efficacy in 30 of the 56 scenarios but was slow. Phoenix executed in a fraction of the running time re-

quired by X-Diff and achieved the best results in terms of efficacy in 26 of 56 tested scenarios. In our

evaluations, Phoenix was by far the most efficient approach to match elements across revisions of the

same XML document.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The large use of XML documents has attracted great attention

to this format. Multiple applications are required to export their

data as XML documents, and several standards use XML as the ba-

sic structure to store and interchange data among systems. For in-

stance, office applications such as MS Office store their data in a

series of zipped XML documents; CASE tools store their UML mod-

els 1 in an XML document following the XMI 2 schema; IDEs store

∗ Corresponding author.

E-mail addresses: alessandreia.oliveira@ice.ufjf.br (A. Oliveira),

gtessarolli@ic.uff.br (G. Tessarolli), ibarreto@ic.uff.br (G. Ghiotto),

brunoferreirapinto@id.uff.br (B. Pinto), fernandocampello@id.uff.br (F. Campello),

matheus.marques@ice.ufjf.br (M. Marques), carlosroberto@ice.ufjf.br (C. Oliveira),

gmenezes@ic.uff.br (I. Rodrigues), kalinowski@inf.puc-rio.br (M. Kalinowski),

usouza@ic.uff.br (U. Souza), leomurta@ic.uff.br (L. Murta), vanessa@ic.uff.br (V.

Braganholo).
1 UML - Unified Modeling Language (http://www.omg.org/spec/UML)
2 XML - XML Metadata Interchange (http://www.omg.org/spec/XMI)

their metadata and scripts as XML documents; scientific experi-

ments represent their workflow in XML. This popularity is a natu-

ral consequence of the simplicity and flexibility of XML.

XML users are often not only interested in the current data, but

also in understanding their evolution over time [1] . As a result,

multiple XML comparison approaches [2–9] were developed to

deal with the specific idiosyncrasies of evolving XML documents.

These approaches focus on identifying differences between two re-

visions of the same document, i.e., between versions resulting from

the evolution of an XML document over time [10] . Therefore, they

use techniques such as tree-to-tree correction [5,7] , combined with

node signature [9] or sub-tree signature [3] , to identify the mini-

mum set of modifications (i.e., inserts, deletes, and updates) that

transforms one XML document revision into another. Hence, they

were conceived for comparing document versions that belong to

the same lineage (i.e., revisions).

Some existing approaches for comparing XML documents take

advantage of the existence of primary keys in the compared docu-

ments. XyDiff [3] , for instance, uses XML specific information such

https://doi.org/10.1016/j.is.2018.07.001

0306-4379/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.is.2018.07.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2018.07.001&domain=pdf
mailto:alessandreia.oliveira@ice.ufjf.br
mailto:gtessarolli@ic.uff.br
mailto:ibarreto@ic.uff.br
mailto:brunoferreirapinto@id.uff.br
mailto:fernandocampello@id.uff.br
mailto:matheus.marques@ice.ufjf.br
mailto:carlosroberto@ice.ufjf.br
mailto:gmenezes@ic.uff.br
mailto:kalinowski@inf.puc-rio.br
mailto:usouza@ic.uff.br
mailto:leomurta@ic.uff.br
mailto:vanessa@ic.uff.br
http://www.omg.org/spec/UML
http://www.omg.org/spec/XMI
https://doi.org/10.1016/j.is.2018.07.001

A. Oliveira et al. / Information Systems 78 (2018) 40–57 41

as an ID attribute to improve the matching among elements. The

existence of an ID attribute for a given node provides a unique

condition to match nodes: the nodes in both revisions must have

the same ID value to be matched. In fact, the use of primary keys

in XML has received attention in the past [11,12] , and nowadays

W3C provides a way to express them in XML Schema [13] . How-

ever, schemas are not mandatory and most XML documents do not

have them [14–16] . Moreover, even when a primary key is present,

there is no guarantee that it will remain intact during document

evolution. For instance, UML models can be serialized through an

XML schema named XMI, which employs IDs to identify elements.

Although these IDs are consistent within a revision, CASE tools are

not supposed to maintain the same IDs among revisions. Thus, IDs

become unreliable for matching elements in this scenario.

In this paper we introduce Phoenix, an approach to compare

XML documents using a recursive similarity computation to detect

matching fragments among the document elements. Without rely-

ing on primary keys, our technique considers the similarity of four

XML features (name, content, attributes, and sub-elements) using

specific algorithms for computing the similarity of each feature.

It then combines all these feature similarities into one overall el-

ement similarity. We then use an optimization algorithm to find

matches of elements that maximizes the overall similarity among

the documents. When the similarity of a match between two el-

ements is below a specific threshold, Phoenix undoes the match

and considers one element as an insertion (if it is present only in

the newer version) and the other as a deletion (if it is present only

in the older version). The same occurs for all other unmatched el-

ements.

Matching elements using similarity is at the core of Phoenix,

so we conducted two experimental evaluations using different ver-

sions of the Baltimore City Employee salaries dataset [17] to un-

derstand further its element matching sensitivity, efficacy, and ef-

ficiency. In the first evaluation, we conducted a sensitivity analysis

to define the best similarity threshold for this domain. Therefore,

we executed Phoenix several times, varying the similarity thresh-

old it uses to determine whether two elements should be con-

sidered a match or not. This sensitivity analysis found 55% as the

best threshold value for this domain, meaning that any match with

similarity below 55% should be undone and interpreted as inde-

pendent insertions and deletions. The second experimental evalu-

ation analyzed the efficacy and efficiency of Phoenix, comparing it

to two state-of-the-art XML diff approaches: X-Diff [9] and XyDiff

[3] . We conclude that XyDiff is the fastest approach, but it fails in

providing precise match results. Also, X-Diff achieved the most pre-

cise results in most of the comparisons (30 correct matches out of

56), but at the price of high execution times. Phoenix, on the other

hand, was able to provide almost equivalent precision results (26

correct matches out of 56) within a fraction of X-Diff’s execution

time. Thus, in our evaluation, it was the most efficient approach

by far.

The remainder of this paper is organized as follows.

Section 2 presents a motivating example aiming at provid-

ing a better understanding of the problem and its relevance.

Section 3 discusses related work. Section 4 describes the Phoenix

approach and its characteristics. Section 5 details Phoenix’s im-

plementation. Section 6 describes the experimental evaluations

and discusses the obtained results. Finally, Section 7 presents the

conclusions and discusses future work.

2. Motivating example

This section presents a motivating example that will be used

throughout the paper to illustrate the problem of comparing XML

documents. Assume Gotham City provides information about its

employees’ salaries in XML format. The city administrators create

a new document every year. Since crime and fraud occur all over

the city, a worried citizen may want to analyze how this infor-

mation evolved, comparing any two revisions of the XML docu-

ment. With this comparison, she would be able to identify hired

or fired/quitted/deceased employees, as well as changes in salary

and job positions.

Assume the first version of this XML document (version 1) rep-

resents a legacy version that was inherited from the previous ad-

ministration. Fig. 1 shows an excerpt of it, containing five employ-

ees. Each < employee > element stores the data of an employee,

with attributes to represent the employee’s name (unique in this

dataset) and phone number, and sub-elements for representing the

employee’s job title, the agency’s name and id she belongs to,

when she was hired, her annual salary, and her gross pay. The

XML document is generated from heterogeneous databases and, as

a consequence, some attributes or elements may be missing. For

instance, the “phonenumber” attribute of “Jim Gordon” is missing.

After trying to contact “Lee Thompkins”, the new administra-

tion realized that her number was incorrect and noticed that the

consistency of the data stored in the first version of this XML docu-

ment was compromised. Consequently, the document was updated

to a new version. For instance, among the changes, we can point

out that the employee named “Lee Thompkins” had her annual

salary and gross pay increased. While updating her annual salary,

the person in charge noticed an error in the employee’s name

and phone number and fixed it. Thus, < annualsalary > changed

to 60,050, < grosspay > changed to 52,588, < agency > was removed

due to a normalization in the data, < hiredate > was added for the

same reason, the name attribute changed to “Leslie Thompkins”,

and phonenumber changed to + 1-424-121-6127. Fig. 2 shows the

diff of versions 1 and 2. To improve the illustration, this figure uses

different colors for some elements and attributes: red represents

deletions from version 1, green represents additions in version 2,

yellow represents updates and, finally, gray is used when there was

no change. Considering this color schema, it is easy to see that an

employee was hired (“Lucius Fox”) and another is missing (“Kristin

Kringle” deceased) from version 1 to version 2. Also, all < agency >

elements were deleted, and several elements changed.

As previously discussed, traditional approaches to compare XML

documents are based on primary keys. In this example, the name

attribute could be elected as a primary key to distinguish each

employee from the others. However, when modifications such as

changing the value of the elected key from Lee Thompkins to Leslie

Thompkins take place, traditional approaches are usually not able

to correctly match the elements in both versions.

3. Related work

The problem of comparing revisions of XML documents is not

new. Existing approaches use techniques such as tree-to-tree cor-

rection, signature matching of sub-trees, or primary key matching

to identify similar elements and then derive the diff. The diff (also

called delta or edit script) is represented as a sequence of opera-

tions (insert, delete , and update – some also use move) that trans-

forms one document version into the other. This delta can then be

interpreted to find matching elements in both versions.

XyDiff [3] uses node signatures (a hash that is computed using

the node value plus the signatures of the children of that node)

to match sub-trees that did not change between versions. It works

in a bottom-up fashion, matching leaf nodes first and propagat-

ing the matches to the subtrees above. Then it does a second top-

down pass. Whenever there is more than one potential candidate

for the matching, XyDiff uses a heuristic to pick one to avoid hav-

ing to perform a full evaluation of the alternatives. It also uses XML

specific information such as ID attributes whenever it is available.

XyDiff models XML documents as ordered trees. Thus, besides con-

Download	English	Version:

https://daneshyari.com/en/article/6858576

Download	Persian	Version:

https://daneshyari.com/article/6858576

Daneshyari.com

https://daneshyari.com/en/article/6858576
https://daneshyari.com/article/6858576
https://daneshyari.com/

