
Information Systems 73 (2018) 25–34

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Rank and select: Another lesson learned

Szymon Grabowski ∗, Marcin Raniszewski

Lodz University of Technology, Institute of Applied Computer Science, Al. Politechniki 11, Łód ́z 90–924, Poland

a r t i c l e i n f o

Article history:

Received 15 January 2017

Revised 10 July 2017

Accepted 2 December 2017

Available online 5 December 2017

2010 MSC:

68W32

Keywords:

Binary sequences

Rank

Select

Compressed data structures

a b s t r a c t

Rank and select queries on bitmaps are essential building bricks of many compressed data structures, in-

cluding text indexes, membership and range supporting spatial data structures, compressed graphs, and

more. Theoretically considered yet in 1980s, these primitives have also been a subject of vivid research

concerning their practical incarnations in the last decade. We present a few novel rank/select variants, fo-

cusing mostly on speed, obtaining competitive space-time results in the compressed setting. Our findings

can be summarized as follows: (i) no single rank/select solution works best on any kind of data (ours

are optimized for bit arrays obtained from wavelet trees for real text datasets, but also work well for

LOUDS-encoded XML tree layouts), (ii) it pays to efficiently handle blocks consisting of all 0 or all 1 bits,

(iii) compressed select does not have to be significantly slower than compressed rank at a comparable

memory use.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Rank and select are essential building bricks of many com-

pressed data structures, and text indexes in particular. In their

most frequently used binary incarnation, they can be defined as

follows: given a bit-vector B [0 . . . n − 1] , rank b (B, i) returns the

number of occurrences of symbol b in the prefix B [0 . . . i] and

select b (B, i) returns the position of the i -th occurrence of symbol

b in B , where b ∈ {0, 1}.

Note that rank 0 (B, i) = i + 1 − rank 1 (B, i) , hence it is enough to

directly support the rank only for one binary symbol (e.g., 1).

There is no similar relation binding the values of select 0 (B, i) and

select 1 (B, i).

It is known for at least two decades [1–3] that these opera-

tions can be performed in constant time, using the extra space of

o (n) bits. Raman et al. [4] showed how to compress the vector B

to nH 0 (B) + o(n) bits, where H 0 (B) is the order-0 entropy of B , and

still support rank and select in constant time.

Much research has been dedicated to construct rank and se-

lect solutions, both compressed and non-compressed, to answer

the queries as fast as possible in practice. Especially in the com-

pressed setting also the lower-order terms of the space matter,

hence the practical questions involve two aspects: the query time

and the space used by the data structure.

In this work we propose several novel rank/select variants, fo-

cusing mostly on speed, obtaining competitive space-time results

∗ Corresponding author.

E-mail address: sgrabow@kis.p.lodz.pl (S. Grabowski).

in the compressed setting. By being competitive we mean good

performance on real-world data (taken from FM-indexes and XML

tree layouts in LOUDS representation). The performance of our

variants on random data with uneven ratio of set to unset bits is

not so competitive, as most of them cannot attain significant (or

any) compression in such a scenario. Yet, on the real-world test

datasets our rank solutions belong to the fastest, and can be beaten

in compression only for the price of much longer times. Also for

select queries our solutions are typically Pareto-optimal, although

here more differences can be seen from dataset to dataset.

The roadmap of the paper is as follows. The next section

briefly recalls the history of practical solutions for rank and se-

lect on binary sequences, starting from the non-compressed ones.

Section 3 introduces our algorithms. Section 4 presents the ex-

perimental rank/select results on multiple datasets, also including

count query times for the FM-index with several ranks plugged in.

The last section concludes.

2. Related work

The original rank solution, by Jacobson [1] , which needs

O (n log log n /log n) bits of space 1 in addition to the original bit-

vector, performs three memory accesses (to one superblock

counter and one block counter, plus a lookup into a table with

precomputed popcount answers), which often translates into three

cache misses, a significant penalty. González et al. [5] proposed

a scheme with one level of blocks followed by sequential scan.

1 Logarithms of base 2 are used throughout the paper.

https://doi.org/10.1016/j.is.2017.12.001

0306-4379/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.is.2017.12.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2017.12.001&domain=pdf
mailto:sgrabow@kis.p.lodz.pl
https://doi.org/10.1016/j.is.2017.12.001

26 S. Grabowski, M. Raniszewski / Information Systems 73 (2018) 25–34

In theoretical terms, this solution no longer obtains both constant

time and sublinear extra space, yet it fares well practically and is

very simple.

Vigna [6] interleaved data from different levels to improve ac-

cess locality. Gog and Petri [7] carried this idea even further, in-

terleaving the precomputed rank values and the bit-vector data.

The sequential scans over small blocks of data are performed with

an efficient 64-bit hardware popcount instruction (popcnt), avail-

able in Intel and AMD processors since 2008. In the manner of the

González et al. solution, Gog and Petri store only one level of pre-

computed ranks, yet data from two successive cache lines can be

sometimes read in their scheme. More or less at the same time,

Zhou et al. [8] presented similar ideas of a cache-friendly layout,

interleaving data and using the hardware popcount instruction, in

a three-level logical solution handling bit-vectors with maximum

size of 2 64 . In a recent work, Grabowski et al. [9] showed a solution

with one cache miss in the worst case. They achieve it with inter-

leaving 64-bit precomputed rank fields with 512 − 64 = 448 bits

of data. As 64 bits per rank is more than needed, part of this field

stores popcount values for some prefixes of the following block,

thus saving on the popcnt invocations.

Kärkkäinen et al. [10] proposed a hybrid scheme for the com-

pressed rank, where the bit-vector is divided into blocks and each

block is encoded separately, choosing one of a few different meth-

ods, depending on its “local” performance. This general approach

was implemented in a version with three encodings: no compres-

sion (i.e., the block kept verbatim), storing the positions of the mi-

nority bits (zeros or ones, whichever have fewer occurrences in

the block), and run-length encoding for runs of zeros and ones. To

make the data structure even more compact, blocks are grouped

into superblocks. Thanks to it, the blocks’ header data store ranks

and offsets to the beginnings of the encoded block bodies with re-

spect to the beginning of the superblock rather than the beginning

of the whole structure. Only the rank operation is supported, yet

the authors mention briefly a possibility to extend their scheme in

order to support selects too.

As it can be implied from the literature, an efficient select

is harder to design than an efficient rank, even in the non-

compressed variant. Clark [2] was the first to show a constant-

time select with 3 n/ � log log n � + O (n 1 / 2 log n log log n) bits of extra

space. The solution is relatively complicated and needs at least 60%

space overhead. González et al. [5] noticed that implementing se-

lect with binary search over a rank structure is often superior (in

spite of having O (log n) time complexity), both in execution times

and the space overhead. Yet, for large inputs or for low densities of

set bits (assuming that we focus on the select 1 query), Clark’s solu-

tion dominates. More recently, Gog and Petri [7] presented a prac-

tical implementation of the Clark select idea, reducing its worst-

case space overhead to less than 29%. Very recently, Pandey et al.

[11,12] proposed an ingenious fast select implementation, making

use of two non-standard x86 CPU instructions, PDEP and TZCNT.

Significant speedups compared to select variants from [8] and the

SDSL library are reported, yet the non-standard instructions require

an Intel’s Haswell (or newer) CPU.

Okanohara and Sadakane [13] were the first to consider practi-

cal compressed implementations of rank/select structures and they

introduced four novel r/s dictionaries (each of which was based on

different ideas), reaching different space/time tradeoffs in theory

and in practice. For example, they offer to answer rank or select

queries in a few tenths of a microsecond (on a 3.4 GHz Intel Xeon)

spending about 25% of extra space for densely (50%) populated bit-

vectors. The ideas used in their work include (among others) the

enumerative code (related to [4]), compacting the bit-vector by re-

moving (and flagging) small blocks consisting of only zeros and

recursively applying the same technique to the remaining blocks,

and gap encoding. The Okanohara and Sadakane paper is impor-

Table 1

The impact of the fraction of mono-blocks f on the average number of memory

accesses per query and the total query times in the rank variants basic and cf .

The block size is 64 bytes. The numbers of memory accesses are calculated from

the formulas on f given in Section 3.1 , in the paragraph on the cf variant. The

times are expressed in nanoseconds.

Dataset Fraction of Basic, cf, Basic, cf,

mono-bl. [%] accesses accesses time time

dna200-bal 73.60 1.2640 1.1943 23.02 25.82

english200-bal 52.95 1.4705 1.2491 32.61 34.88

proteins200-bal 45.66 1.5434 1.2481 37.00 37.27

sources200-bal 53.82 1.4618 1.2485 32.16 34.48

xml200-bal 78.50 1.2150 1.1688 21.39 23.81

dna200-huff 9.03 1.9097 1.0822 36.68 30.96

english200-huff 23.74 1.7626 1.1811 40.87 36.02

proteins200-huff 3.84 1.9616 1.0370 44.40 31.81

sources200-huff 36.78 1.6322 1.2325 39.39 36.88

xml200-huff 68.35 1.3165 1.2163 23.63 27.02

tant also because they were the first to distinguish between dense

and sparse bit-vectors and offering different solutions depending

on the case.

Vigna [6] obtained times similar to [13] , yet with about twice

smaller space overhead. It was the first work on rank/select capa-

ble of handling vectors of size up to 2 64 bits. Focusing on 64-bit

architectures also allowed to successfully apply bit-parallel (also

called broadword programming) tricks, e.g., for an Elias–Fano rep-

resentation of monotone sequences, useful for sparsely populated

bit-vectors.

Navarro and Providel [14] raised the bar even higher (or, should

we say, lower?), reducing the space overhead to about 10% of the

original bit-vector on top of the entropy, solving in this space both

rank and select. Their rank queries are handled within about 0.4

μsec and select queries within 1 μsec (on a 3.0 GHz Intel Core 2

Duo). They also show how to reuse sampling data between the

rank and the select in a non-compressed scenario, with a bene-

fit in space, which allows to answer these queries within around

0.2 μsec, using only 3% of extra space on top of the plain bit-

vector. Another noteworthy idea from this work is computing en-

tries of the universal table needed in the Raman et al. [4] solution

on the fly, which requires more time to rebuild a desired block, but

greatly reduces the space overhead.

A unique approach was taken by Beskers and Fischer [15] , who

focus on sequences with low higher-order entropies. Their solutions

are likely to be competitive, e.g., for representing wavelet trees

for repetitive collections of strings, like individual genomes of the

same species.

3. Our algorithms

In the two following subsections we present our compressed

rank and select variants. We describe 32-bit implementations of

our solutions (where the bit-vector size is limited to 2 32 − 1 bits,

i.e., almost 512 MB). We also implemented corresponding 64-bit

variants, where the size limit is increased to 2 64 − 1 bits, but ap-

plying our 64-bit ranks or selects to relatively small bit-vectors is

inefficient. For this reason, in the experiments our 64-bit variants

are used only for the large datasets.

3.1. Compressed rank

The input bit-vector B is conceptually divided into blocks of k

bytes, and each sequence of h successive blocks is grouped in a

superblock. For each superblock a fixed-size header is stored, hav-

ing h ranks of the prefix of B up to the current block and h offsets

to the areas storing the successive blocks. Popcounting over a block

(or its prefix), with up to � k /8 � 64-bit built-in instructions, is used

Download English Version:

https://daneshyari.com/en/article/6858619

Download Persian Version:

https://daneshyari.com/article/6858619

Daneshyari.com

https://daneshyari.com/en/article/6858619
https://daneshyari.com/article/6858619
https://daneshyari.com

