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a b s t r a c t 

Constant technological advances in electronic devices have led to the growth of elaborated data such as 

large texts, time series, georeferenced imagery, genetic sequences, photos, videos and several other types 

of complex data. Differently from scalar, traditional data types such as numbers and strings, complex 

data do not present the order relation property, which allows identifying whether an element precedes 

another according to some criterion. Therefore, these data are usually compared by the similarity degree 

among them. The Metric Access Methods (MAMs) are recognized as well-suited to perform similarity 

queries over such kind of data more efficiently than other access methods. MAMs can be considered 

dynamic or static depending on the pivot type used to construct them. Pivots are often employed to nar- 

row the search for data. Global pivots can be employed to look into elements in the whole dataset, thus 

they have a high impact in the process of pruning irrelevant elements, since a single global pivot can be 

used to discard a large amount of irrelevant elements. Nevertheless, MAMs based on global pivots may 

have their dynamicity compromised by the fact that eventual pivot-related updates must be propagated 

through the entire structure. Local pivots, on the other hand, allow the maintenance to occur locally at 

the price of a lower pruning ability. In this paper, we propose novel techniques for improving the per- 

formance of dynamic MAMs without harming their dynamicity, once that several applications handle 

online complex data and, consequently, demand efficient dynamic indexes to be successful. Specifically, 

our main contributions are three techniques: (i) CLAP, which consists of employing local additional piv- 

ots to reduce distance calculations; (ii) ACIR, which is combined with CLAP and anticipates information 

from child nodes to reduce unnecessary disk accesses; and (iii) SCOOP, which is combined with CLAP 

as an extended version of ACIR, anticipating a larger amount of information from child nodes. The tech- 

niques have been applied to a dynamic MAM and evaluated over real datasets ranging from moderate 

to high dimensionality and cardinality. The experimental results show that our techniques were able to 

reduce query execution time in up to 63% for point queries and up to 53% for queries retrieving multiple 

elements. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, the technological advances in electronic devices 

have accelerated the generation of complex data. In this work, we 

use the term complex data to refer to data that cannot be repre- 

sented by traditional types, such as numbers, characters, dates and 

short texts. Examples of complex data are large texts, time series, 

georeferenced imagery, genetic sequences, photos and videos. 
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The scalar data domains possess the order relation property, 

which allows identifying, for each pair of elements in the do- 

main, whether one precedes the other according to some crite- 

rion. Based on this property, most of the index structures imple- 

mented in the current Relational Database Management Systems 

(RDBMSs) are able to efficiently perform queries. However, the or- 

der relation does not apply to most of the complex domains [1] . 

Since traditional index structures are based on this property, they 

are not suitable for complex data. Hence, the Metric Access Meth- 

ods (MAMs) were developed to index complex data and to allow 

efficient similarity searches. 

Several MAMs have been proposed, categorized in different 

ways depending on which factors are considered to structure the 
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indexed data. These factors comprehend: response type, struc- 

ture dynamicity, space partitioning and pivot type. Regarding re- 

sponse type, MAMs can be either exact or approximate. Approxi- 

mate MAMs provide less accurate responses in favor of efficiency. 

As to structure dynamicity, MAMs can be either dynamic or static. 

Dynamic MAMs enable adding and removing elements at any time 

with no need for reconstruction. Static MAMs, on the other hand, 

require the prior existence of the whole dataset to be indexed and 

usually need to be reconstructed in face of updates. Considering 

space partitioning, the basic types include: ball partitioning [2] , 

generalized hyperplane partitioning [2] and excluded middle parti- 

tioning [3] . Lastly, with respect to pivot type, MAMs can be based 

either on global or local pivots. 

In this paper, pivots are elements that act as representatives of 

certain regions of the dataset. Their purpose is to prune irrelevant 

elements during query execution. It is said that a pivot is global 

when every element in the dataset can be referenced through it, 

whereas a pivot is local when only a portion of the dataset can 

be referenced through it. Because global pivots refers to every el- 

ement in the dataset, they have a high impact in the process of 

pruning irrelevant elements, since a single global pivot can be used 

to discard large amounts of irrelevant elements. However, MAMs 

based on global pivots may have their dynamicity compromised by 

the fact that eventual pivot-related updates must be propagated 

through the entire structure. Local pivots, on the other hand, re- 

strict the maintenance locally at the price of a lower pruning abil- 

ity. Therefore, pivot type and structure dynamicity are directly re- 

lated to each other. 

In this paper, we address the challenge of improving the prun- 

ing ability of dynamic MAMs without harming their dynamicity. 

This is relevant for applications that manage online complex data 

and, consequently, demand dynamic and efficient index structures. 

We present novel techniques, applicable to hierarchical MAMs 

based on local pivots, which aim at reducing the number of dis- 

tance calculations and disk accesses in similarity queries — two 

factors that determine the performance of MAMs. Specifically, our 

main contributions are as follows: 

• The CLAP ( C utting L ocal A dditional P ivots ) technique, which em- 

ploys local additional pivots to reduce the number of distance 

calculations; 
• The ACIR ( A nticipation of C hild I nformation regarding 

R epresentatives ) technique, which employs CLAP and anticipates 

information from child nodes related to node representatives 

to reduce the number of unnecessary disk accesses; 
• The SCOOP ( S earching with C utting local pivots and informati O n 

anticipati O n of P ivots ) technique, which employs CLAP and an- 

ticipates information from child nodes regarding both node rep- 

resentatives and additional pivots. 

The CLAP technique employs local additional pivots to reduce 

the uncertainty region in the search space. This is the region of 

the search space that may contain elements that are not in the 

answer, but nonetheless cannot be pruned until they are individu- 

ally analyzed — which implies distance calculations. The ACIR and 

SCOOP techniques, in turn, anticipate information from child nodes 

into their parents to enable pruning the irrelevant elements be- 

fore visiting the disk pages that actually store them. Unlike other 

approaches that employ multiple pivots to define regions in the 

search space, our approaches allow reducing distance calculations 

and disk accesses without impairing the index dynamicity. 

We applied the CLAP, ACIR and SCOOP techniques to the MAM 

Slim-tree [4,5] and extensively evaluated them in a set of experi- 

ments over real datasets. The datasets vary both in the number of 

elements and in the number of attributes. The experiments also 

employed distance functions of different computational costs —

from linear to quadratic. The results confirm the efficiency of the 

techniques, as they provided significant gains in execution time, 

number of distance calculations and number of disk accesses in 

similarity queries over all datasets evaluated. Partial results of this 

work regarding the CLAP and ACIR techniques have been published 

[6] . In this paper, we extend the anticipation-of-information mech- 

anism, resulting in the SCOOP technique; provide in-depth details 

regarding the three proposed techniques, including SCOOP’s con- 

struction and query algorithms; and implement the related ap- 

proach Nearest-Neighbor graph (NN-graph), employed by the dy- 

namic MAM M 

∗-tree [7] , over the same code base to enable a fair 

comparison. Our techniques have achieved notable gains over NN- 

graph, showing to be effective to improve the performance of dy- 

namic hierarchical MAMs. 

The rest of this paper is organized as follows. Section 2 cov- 

ers concepts regarding similarity queries over complex data and 

Section 3 presents the related work. Section 4.1 describes the CLAP 

technique. Sections 4.2 and 4.3 describe the anticipation tech- 

niques ACIR and SCOOP. Section 5 presents the application of the 

proposed techniques to the MAM Slim-tree, describing the new 

node structures and the algorithms for insertion and for similar- 

ity queries. Section 6 describes the experiments and discusses the 

results. Finally, Section 7 concludes the work. 

2. Background 

2.1. Similarity queries over complex data 

Most of complex domains do not possess the relation order. 

Therefore, relational operators (e.g. < , ≤ , > and ≥ ) cannot be 

employed on the elements of such domains to identify any prece- 

dence among them. It is also uncommon to employ the opera- 

tors = and � = on complex data, since it is quite unlikely that two 

complex elements are identical. Take for example two images. If a 

single pixel is different, then they are not equal. Hence, in complex 

domains, queries that consider the similarity degree among the el- 

ements make more sense [1] . 

To enable queries over complex domains, the elements of a 

dataset usually have characteristics extracted from their content. 

The extracted characteristics, known as feature vector or signature , 

are used in place of the raw data as the base for comparisons. 

The retrieval of complex data by means of such characteristics is 

called content-based retrieval . Usually, complex data are compared 

through dissimilarity relations between a pair of feature vectors. 

The comparisons are made by employing a distance function whose 

return value represents how dissimilar two feature vectors are. 

Queries performed over complex data are called similarity queries , 

since they retrieve from the dataset the most similar elements. 

The criteria for selecting the most similar elements depend on 

the type of similarity query [8] . There are several types of sim- 

ilarity query, which include selections, joins and grouping simi- 

larity queries. The two most common types are the Range and 

the k -Nearest Neighbor queries [9] . The notation adopted in this 

paper considers an environment wherein the data is stored in a 

similarity-enabled RDBMS. Suppose a relation R containing an at- 

tribute S j , sampled from a complex data domain. In the context, 

we describe both types of similarity query as follows. 

Range query — Rq. Given a threshold ξ , a Range query re- 

trieves every tuple t i from relation R whose value s i of attribute 

S j , which refers to the feature vector of the element, satisfies the 

condition δ( s i , s q ) ≤ ξ , where s q is the value held by the provided 

element Q for the attribute S j and δ is the distance function that 

returns the dissimilarity value between s i and s q . Considering R as 

a relation that stores images, an example of Range query is: “Select 

the images which are similar to image Q by up to 5 units”. 

k -Nearest Neighbor query — k -NNq. Given an integer value k 

≥ 1, a k -Nearest Neighbor query retrieves k tuples t i from relation 
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