
A multi-level approach to modeling language extension
in the Enterprise Systems Domain

Colin Atkinson a, Ralph Gerbig a,n, Mathias Fritzsche b

a University of Mannheim, Germany
b SAP AG, Germany

a r t i c l e i n f o

Article history:
Received 28 February 2014
Received in revised form
22 September 2014
Accepted 14 January 2015

Keywords:
Multi-level modeling
Model language extension
Orthogonal classification architecture
Linguistic classification
Ontological classification

a b s t r a c t

As the number and diversity of technologies involved in building enterprise systems
continues to grow so does the importance of modeling tools that are able to present
customized views of enterprise systems to different stakeholders according to their needs
and skills. Moreover, since the range of required view types is continuously evolving, it
must be possible to extend and enhance the languages and services offered by such tools
on an ongoing basis. However, this can be difficult with today's modeling tools because
the meta-models that define the languages, views and services they support are usually
hardwired and thus not amenable to extensions. In practice, therefore, various work-
arounds have to be used to extend a tool's underlying meta-model. Some of these are built
into the implemented modeling standards (e.g. UML 2, BPMN 2.0 and ArchiMate 2.0)
while others have to be applied by complementary, external tools (e.g. annotation
models). These techniques not only increase accidental complexity, they also reduce the
ability of the modeling tool to ensure adherence to enterprise rules and constraints. In this
paper we discuss the strengths and weaknesses of the various approaches for language
extension and propose a modeling framework best able to support the main extension
scenarios currently found in practice today.

& 2015 Published by Elsevier Ltd.

1. Introduction

Over the last few years the success of open modeling
frameworks such as the Eclipse Modeling Framework (EMF)
[1] has lead to a significant increase in the number of tools
driven by meta-models rather than “hardwired” data types.
This in turn has established a thriving industry around such
tools offering extensions to their core modeling languages.
This capability is particularly important for visualizing enter-
prise systems with modeling frameworks such as ArchiMate
[2], The Open Group Architecture Framework (TOGAF) [3]

and the Zachman framework [4], since the number of
different views and stakeholders is large and heterogeneous.

Sometimes the expressive capabilities of a modeling
language used to build a tool can be extended using
extension mechanisms already built into the language
such as those of the UML 2 [5], BPMN 2.0 [6] and
ArchiMate 2.0 [2] extension mechanisms. Often, however,
the modeling languages upon which tools are based do not
offer built-in extension mechanisms, or if they do, these
mechanisms are not fully implemented by standard-
compliant tools. In such cases, other techniques such as
model annotation via model weaving have to be applied to
store the additional information needed by the extended
language. The additional information is stored in separated
annotation models which are linked to the main model by
using model weaving techniques of the form described by

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.01.003
0306-4379/& 2015 Published by Elsevier Ltd.

n Corresponding author.
E-mail addresses: atkinson@informatik.uni-mannheim.

de (C. Atkinson), gerbig@informatik.uni-mannheim.de (R. Gerbig),
mathias.fritzsche@sap.com (M. Fritzsche).

Information Systems ] (]]]]) ]]]–]]]

Please cite this article as: C. Atkinson, et al., A multi-level approach to modeling language extension in the Enterprise
Systems Domain, Information Systems (2015), http://dx.doi.org/10.1016/j.is.2015.01.003i

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.01.003
http://dx.doi.org/10.1016/j.is.2015.01.003
http://dx.doi.org/10.1016/j.is.2015.01.003
mailto:atkinson@informatik.uni-mannheim.de
mailto:atkinson@informatik.uni-mannheim.de
mailto:gerbig@informatik.uni-mannheim.de
mailto:mathias.fritzsche@sap.com
http://dx.doi.org/10.1016/j.is.2015.01.003
http://dx.doi.org/10.1016/j.is.2015.01.003
http://dx.doi.org/10.1016/j.is.2015.01.003
http://dx.doi.org/10.1016/j.is.2015.01.003


Bézivin et al. [7]. Model weaving essentially defines the
technique used to store links between two models.

In practice, therefore, software engineers and enterprise
architects are often faced with a range of different options for
extending the capabilities of the languages supported by
modeling tools, each with a different mix of advantages and
disadvantages. Although one might imagine it is always best
to use the built-in features to extend a modeling language,
this is not always the case. Ad hoc model extension techni-
ques can often lead to extension definitions which are better
structured and of higher quality in terms of such software
engineering maxims as “separation of concerns”, “high
cohesion” and “loose coupling”. In fact, at the time of writing,
we believe no existing modeling framework offers the ideal
mix of features needed to support the full range of modeling
language extension requirements found in the enterprise
computing domain. The goal of this paper is to address this
problem by describing what this mix of features should be
and what properties a modeling framework should have to
support them.

In the next section we first identify the different
fundamental strategies for supporting modeling language
extension and characterize their strengths and weak-
nesses. In Section 3 we then present these strategies in
the context of a small example scenario from the domain
of business process performance modeling. This example
highlights the need for new modeling approaches sup-
porting modeling language extension. Section 4 then
introduces such an alternative modeling approach, known
as multi-level modeling, which we believe provides the
optimal approach for model extension, while Section 5
analyses this architecture from the point of view of the
strategies and requirements outlined in previous chapters.
It also proposes enhancements to current multi-level
modeling approaches to address some identified weak-
nesses. Section 6 then illustrates how this extension-aware
form of multi-level modeling could be applied in an
industrial setting. Then Section 7 evaluates the proposed
multi-level modeling approach on a real world scenario to
show feasibility of the approach followed by related work
in Section 8. Finally, Section 9 concludes with some final
remarks and suggestions for future work.

This paper is an extended and reworked version of a
previous paper presented at the EDOC 2013 conference
entitled “Modeling Language Extension in the Enterprise
Systems Domain” [8]. In contrast to the original paper, this
version has a dedicated Evaluation section (Section 7),
presenting the strengths of the approach in the context of
a significant real-world example from the literature, and a
Related Work (Section 8) section. The section about model
annotation (Section 2.3) has been extended using an
aspect-oriented modeling implementation method and
the description of multi-level modeling (Section 4) has
been significantly extended to better introduce the
approach.

2. Modeling language extensions

When extending a modeling language it is useful to
distinguish between language enhancement and language
augmentation. The former focuses on extending a language

with additional modeling concepts from the same domain
as the original concepts, while the latter introduces new
concepts from a different problem domain than those in
the original language. An example of language enhance-
ment is adding an additional kind of class to the UML
meta-model so that users can instantiate special classes
(e.g. Java beans) in addition to regular, unspecialized
classes. This effectively enriches the original language with
concepts that make it more expressive in its original
domain. An example of language augmentation, on the
other hand, is to extend a business process modeling
language with data for performance simulation. This
effectively enriches the original language with the ability
to express concepts from a completely different domain.

The modeling tools and frameworks available today
essentially support three fundamental approaches for model-
ing language extension — (a) dedicated, built-in extension
mechanisms (b) meta-model customization and (c) model
annotation. Each has pros and cons when used for practical
enhancement and augmentation tasks. Choosing the wrong
mechanism for an extension task can easily break design
principles, such as separation of concerns, loose coupling and
high cohesion, and introduce accidental complexity [9,10] into
models. These different approaches are elaborated further
and their pros and cons are highlighted in the following
subsection.

2.1. Meta-model customization

The language extension approach that at first sight
appears to be the most straightforward is to directly
change the language's meta-model. However, in practice
this turns out not to be the case with most frameworks
and tools available today because either the meta-models
are hardwired and not accessible for changes at run-time,
or the language extensions defined by changing the meta-
model cannot directly be used in the modeling tool. In the
second case, after a meta-model has been customized the
modified tool needs to be recompiled and redeployed to
make it aware of the changes. This is not only a tedious
and error prone task it often has to be followed up by the
use of model migration tools to keep the model instances
in-sync with the changed meta-model.

Another problem of meta-model customization is that
uncontrolled tinkering with a meta-model, at any place in
its inheritance hierarchy, can easily lead to violations of the
separation of concerns design principle and lead to meta-
models with low cohesion. When mixing meta-model-
elements from two different problem-domains (e.g. from
the business process and simulation domains) it is important
to integrate them in a way that respects high cohesion and
loose-coupling, otherwise the resulting meta-model can
quickly become unmaintainable. This is why, when evolving
UML 1.0 into UML 2.0, the OMG put so much effort into
separating concerns by organizing model-elements into
packages. A concept similar to packages is thus an essential
prerequisite for augmenting a language through meta-model
customization in a maintainable way. A weakness of most
current package mechanisms used in meta-modeling tools is
that all defined packaging are always present. It is usually not
possible to create customized versions of a tool, with

Please cite this article as: C. Atkinson, et al., A multi-level approach to modeling language extension in the Enterprise
Systems Domain, Information Systems (2015), http://dx.doi.org/10.1016/j.is.2015.01.003i

C. Atkinson et al. / Information Systems ] (]]]]) ]]]–]]]2

http://dx.doi.org/10.1016/j.is.2015.01.003
http://dx.doi.org/10.1016/j.is.2015.01.003
http://dx.doi.org/10.1016/j.is.2015.01.003


Download English Version:

https://daneshyari.com/en/article/6858675

Download Persian Version:

https://daneshyari.com/article/6858675

Daneshyari.com

https://daneshyari.com/en/article/6858675
https://daneshyari.com/article/6858675
https://daneshyari.com

