Information Systems I (§mn) mna—umn

Contents lists available at ScienceDirect =
Information
Systfms
Information Systems S
~ journal homepage: www.elsevier.com/locate/infosys e

Bloofi: Multidimensional Bloom filters

Adina Crainiceanu **, Daniel Lemire "

2 US Naval Academy, United States
b L ICEF Research Center, TELUQ University of Quebec, Canada

ARTICLE INFO ABSTRACT

Bloom filters are probabilistic data structures commonly used for approximate membership
problems in many areas of Computer Science (networking, distributed systems, databases,
etc.). With the increase in data size and distribution of data, problems arise where a large
number of Bloom filters are available, and all of them need to be searched for potential
matches. As an example, in a federated cloud environment, each cloud provider could
encode the information using Bloom filters and share the Bloom filters with a central
coordinator. The problem of interest is not only whether a given element is in any of the sets
represented by the Bloom filters, but also which of the existing sets contain the given
element. This problem cannot be solved by just constructing a Bloom filter on the union of
all the sets. Instead, we effectively have a multidimensional Bloom filter problem: given an
element, we wish to receive a list of candidate sets where the element might be.

To solve this problem, we consider three alternatives. Firstly, we can naively check many
Bloom filters. Secondly, we propose to organize the Bloom filters in a hierarchical index
structure akin to a B+ tree that we call Bloofi. Finally, we propose another data structure
that packs the Bloom filters in such a way as to exploit bit-level parallelism, which we call
Flat-Bloofi.

Our theoretical and experimental results show that Bloofi and Flat-Bloofi provide scalable
and efficient solutions alternatives to search through a large number of Bloom filters.

Published by Elsevier Ltd.

Keywords:

Bloom filter index
Multidimensional Bloom filter
Federated cloud

Data provenance

1. Introduction Bloom filters to reduce the disk lookups for non-existent

data. As digital data increases in both size and distribution,

Bloom filters [3] are used to efficiently check whether an
object is likely to be in the set (match) or whether the object
is definitely not in the set (no match). False positives are
possible, but false negatives are not. Due to their efficiency,
compact representation, and flexibility in allowing a trade-
off between space and false positive probability, Bloom
filters are popular in representing diverse sets of data. They
are used in databases [23], distributed systems [5], web
caching [14], and other network applications [4]. For exam-
ple, Google BigTable [6] and Apache Cassandra [29] use

* Corresponding author. Tel.: +1 410 293 6822; fax: +1 410 293 2686.
E-mail addresses: adina@usna.edu (A. Crainiceanu),
lemire@gmail.com (D. Lemire).

http://dx.doi.org/10.1016/].is.2015.01.002
0306-4379/Published by Elsevier Ltd.

applications generate a large number of Bloom filters, and
these filters need to be searched to find the sets containing
particular objects.

Our work is motivated by highly distributed data prove-
nance applications, in which data is tracked as it is created,
modified, or sent/received between the multiple sites parti-
cipating in the application, each site maintaining the data in
a cloud environment. Bloom filters can be maintained by
each individual site and shared with a central location. For
each piece of data, we need to find the sites holding the data.
Thus, we may need to search through a large number of
Bloom filters stored at the central location.

Indexing Bloom filters is different from indexing generic
objects to improve search time. There is one level of indirec-
tion between the elements searched for, and the objects

http://dx.doi.org/10.1016/].is.2015.01.002

Please cite this article as: A. Crainiceanu, D. Lemire, Bloofi: Multidimensional Bloom filters, Information Systems (2015),

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.01.002
http://dx.doi.org/10.1016/j.is.2015.01.002
http://dx.doi.org/10.1016/j.is.2015.01.002
mailto:adina@usna.edu
mailto:lemire@gmail.com
http://dx.doi.org/10.1016/j.is.2015.01.002
http://dx.doi.org/10.1016/j.is.2015.01.002
http://dx.doi.org/10.1016/j.is.2015.01.002
http://dx.doi.org/10.1016/j.is.2015.01.002

2 A. Crainiceanu, D. Lemire / Information Systems 1 (:iin) nun-n

directly indexed by the index structure. In particular, each
Bloom filter is a compact representation of an underlying set
of elements. The question of interest is an all-membership
query: given a particular element (not a Bloom filter), which
underlying sets contain that element? The query subject is an
element, but the objects we are indexing and searching
through are Bloom filters, so what we are creating is a
meta-index. The traditional index structures, such as hash
indexes, B+trees, R trees and their distributed versions [1],
do not directly apply in this case as we are indexing Bloom
filters and not the keys themselves. All we are given from
each site is a Bloom filter.

There has been significant work in using Bloom filters
in various applications, and developing variations of Bloom
filters. Counting filters [14,15] support deletions from the
Bloom filter; compressed Bloom filters [21] are used with
web caching; stable Bloom filters [11] eliminate duplicates
in streams, spectral Bloom filters [7] extend the applic-
ability of Bloom filters to multi-sets, multi-class Bloom
Filter (MBF) [20] use per-element probabilities. Yet there
has been few attempts to accelerate queries over many
Bloom filters, what we call the multidimensional Bloom
filter problem, even though our problem is closely related
to signature file methods (see Section 8) where one seeks
to index set-value attributes.

To solve this problem, we propose Bloofi (Bloom filter
index), a hierarchical index structure for Bloom filters. Bloofi
provides probabilistic answers to all-membership queries and
scales to tens of thousands of Bloom filters. When the
probability of false positives is low, Bloofi of order d (a tunable
parameter) can provide O(dlog;N) search cost, where N is the
number of Bloom filters indexed. Bloofi also provides support
for inserts, deletes, and updates with O(dlog;N) cost and
requires O(N) storage cost. In designing Bloofi, we take
advantage of the fact that the bitwise OR between Bloom
filters of same length, constructed using the same hash
functions, is also a Bloom filter. The resulting Bloom filter
represents the union of the sets represented by the individual
Bloom filters. This property allows us to construct a tree where
the leaf levels are the indexed Bloom filters, and the root level
is a Bloom filter that represents all the elements in the system.
This tree is used to prune the search space (eliminate Bloom
filters as candidates for matches) while processing all-
membership queries. Our performance evaluation shows that
Bloofi performs best when the false positive probability of the
union Bloom filter (a Bloom filter that is the union of all the
indexed Bloom filters) is low and provides O(d x log,N) search
performance in most cases, with O(N) being the storage cost
and O(d x logyN) the maintenance cost. Bloofi could be used
whenever a large number of Bloom filters that use the same
hash functions need to be checked for matches.

Bloom filters are constructed over bitmaps, i.e., vector of
Booleans. With bitmaps, we can exploit bit-level parallelism:
on a 64-bit processor, we can compute the bitwise OR
between 64 bits using a single instruction. We use bit-
level parallelism with Bloofi to optimize the construction of
the data structure. However, we have also designed an
alternative data structure that is designed specifically to
exploit bit-level parallelism (henceforth Flat-Bloofi). Though
not as scalable as Bloofi, it can be fast when the number of
Bloom filters is moderate.

This paper is an extended version of “Bloofi: A Hierarch-
ical Bloom Filter Index with Applications to Distributed Data
Provenance” [9] published in the Second International
Workshop on Cloud Intelligence Cloud-I 2013. The paper
was completely revised, and the new version introduces an
additional data structure, Flat-Bloofi, a new implementation
for Bloofi that improves the performance by an order of
magnitude, and a new performance evaluation.

The rest of this paper is structured as follows: Section 2
describes a distributed data provenance application for
Bloofi. Section 3 briefly reviews the concept of Bloom filter.
Section 4 introduces Bloofi, a hierarchical index structure for
Bloom filters. Section 5 introduces the maintenance algo-
rithms and a theoretical performance analysis. Section 6
introduces Flat-Bloofi, a data structure for the multidimen-
sional Bloom filter problem, designed to exploit bit-level
parallelism. Section 7 shows the experimental results. We
discuss related work in Section 8 and conclude in Section 9.

2. Motivation: application to distributed data provenance

In this section we describe the distributed data provenance
application that motivated our work on Bloofi. Let us assume
that a multinational corporation with hundreds of offices in
geographically distributed locations (sites) around the world
is interested in tracking the documents produced and used
within the corporation. Each document is given a universally
unique identifier (uuid) and is stored in the local repository, in
a cloud environment. Documents can be sent to another
location (site) or received from other locations, multiple
documents can be bundled together to create new docu-
ments, which therefore are identified by new uuids, docu-
ments can be decomposed into smaller parts that become
documents themselves, and so on. All these “events” that are
important to the provenance of a document are recorded in
the repository at the site generating the event. The events can
be stored as RDF triples in a scalable cloud triple store such as
Rya [25]. The data can be modeled as a Directed Acyclic Graph
(DAG), with labeled edges (event names) and nodes (docu-
ment uuids). As documents travel between sites, the DAG is in
fact distributed not only over the machines in the cloud
environment at each site, but also over hundreds of geogra-
phically distributed locations. The data provenance problem
we are interested in solving is finding all the events and
document uuids that form the “provenance” path of a given
uuid (all “ancestors” of a given node in the distributed graph).

Storing all the data, or even all the uuids and their
location, in a centralized place is not feasible, due to the
volume and speed of the documents generated globally.
Fully distributed data structures, such as Chord [28] or
P-Ring [10], require even more communication (messages)
than the centralized solution, increasing the latency and
bandwidth consumption, so they are also not feasible due
to the volume and speed of the documents generated
globally. Moreover, local regulations might impose restric-
tions on where the data can be stored. However, since all
the global locations belong to the same corporation, data
exchange and data tracking must be made possible.

Without any information on the location of a uuid, each
provenance query for a uuid must be sent to all sites. Each
site can then determine the local part of the provenance

http://dx.doi.org/10.1016/].is.2015.01.002

Please cite this article as: A. Crainiceanu, D. Lemire, Bloofi: Multidimensional Bloom filters, Information Systems (2015),

http://dx.doi.org/10.1016/j.is.2015.01.002
http://dx.doi.org/10.1016/j.is.2015.01.002
http://dx.doi.org/10.1016/j.is.2015.01.002

Download English Version:

https://daneshyari.com/en/article/6858679

Download Persian Version:

https://daneshyari.com/article/6858679

Daneshyari.com

https://daneshyari.com/en/article/6858679
https://daneshyari.com/article/6858679
https://daneshyari.com

