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This paper develops a new global sensitivity analysis (GSA) framework for computational 
models with input variables being characterized by second-order probability models due 
to epistemic uncertainties. Firstly, two graphical tools, called individual effect (IE) function 
and total effect (TE) function, are defined for identifying the influential and non-influential 
input variables. Secondly, two probabilistic GSA indices, called T-indices, are introduced 
for comparing the relative importance of pairwise influential input variables. Thirdly, 
the expected Sobol’ indices are introduced for ranking the importance of the input 
variables. For efficiently estimating the proposed GSA indices, the extended Monte Carlo 
simulation (EMCS), whose computational cost is the same as the Monte Carlo simulation 
for estimating the Sobol’ indices, is firstly introduced, and then a procedure combining 
Kriging surrogate model and EMCS procedure is introduced for further reducing the 
computational cost. Three numerical examples and a ten-bar structure are introduced 
for illustrating the significance of the proposed GSA framework and demonstrating the 
effectiveness of the computational methods.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Global sensitivity analysis (GSA) aims at quantifying the different types of effects of uncertain model input variables on 
the uncertainty of model output, and measuring the relative importance of each model input. It has been widely used in 
many fields involving computational models such as computational physics and chemistry [1,2], environmental science [3]
and reliability engineering [4,5]. Till now, many GSA techniques have been developed by researchers [6,7]. The screening 
method was developed by Morris [8] for identifying a small number of influential input variables for a high-dimensional 
computational model, with acceptable computational cost. The variance-based GSA was developed by Sobol’ [9] as well as 
Homma and Saltelli [10] for identifying the individual and interaction contributions of each input variable on the model out-
put variance. With the consideration that variance is not affordable for characterizing uncertainty, the moment-independent 
GSA was developed by Borgonovo [11,12] for estimating the effect of each uncertain input variable on the probability density 
function (PDF) of model output, and it was later proved to be monotonic transformation invariant [13] and suitable for mea-
suring the strength of dependence between model input and output variables [14]. Among all the available GSA techniques, 
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the variance-based one has drawn the most attentions, and many computational methods, such as Monte Carlo Simulation 
(MCS) [15,16], Fourier Amplitude Sensitivity Test (FAST) [17,18] and surrogate models [19–22], have been developed for 
estimating the variance-based GSA indices (also called Sobol’ indices).

All the above-mentioned GSA techniques are based on the assumption that the PDFs of the model input variables are 
precisely determined. However, this is only applicable when the size of data used for identifying the PDFs of these variables 
is sufficiently large and the available data is accurate enough. When the input variables are deterministic, but there is uncer-
tainty about their true values, they can be characterized by subjective probability distributions, and all the above-mentioned 
methods can be used to this kind of problems, as shown in Ref. [23]. However, if there is aleatory uncertainty about the 
input variables, and due to the epistemic uncertainty resulting from incompleteness and/or inaccuracy of the available data, 
the PDFs of the input variables cannot be precisely determined [24,25]. In this situation, the distribution parameters can be 
characterized either by confidence intervals or by random numbers instead of constant values. When the Bayesian updating 
approach is applied, the distribution parameters are characterized as random variables, and it is called second-order prob-
ability model [26]. In this situation, the possible PDF of each input variable degrades into its true PDF when the available 
data is sufficiently big and accurate.

When the input variables are characterized by the second-order probability models, three strategies have been developed 
for implementing the GSA analysis. In the first strategy, the sensitivity indices are defined as the partial derivatives of 
probabilistic responses (e.g., model output variance and expectation) w.r.t. the distribution parameters, and they reflect 
the changes of the probabilistic responses due to small changes of distribution parameters. These local sensitivity indices 
can be efficiently computed by the score function method [27]. In the second strategy, the GSA indices are defined by 
decomposing the variance of some probabilistic responses into partial variances of increasing orders governed by the random 
distribution parameters instead of the random input variables, so as to estimate the individual, interaction and total effects 
of each random distribution parameter on the probabilistic responses in a global sense [28,29]. The main disadvantage of the 
former two strategies is that the sensitivity indices measure the relative importance of the distribution parameters instead 
of the random input variables, thus cannot be used for ranking the random input variables. In the third strategy, the GSA 
indices are defined simultaneously for the random input variables as well as their distribution parameters by introducing 
the probability integral transformation (PIT) to each of the random input variables [30,31]. The main disadvantage of this 
strategy is that, when the data size is sufficiently large and the uncertainties of the distribution parameters disappear, 
the GSA indices will not degrade into the classical Sobol’ indices, due to the fact that Sobol’ indices are not monotonic 
transformation invariant [13].

In this paper, we propose a new framework for quantifying the relative importance of each input variable when they are 
characterized by the second-order probability models. Firstly, we propose two graphical tools for identifying the influential 
and non-influential input variables, and then we propose two probabilistic GSA indices, based on Sobol’ indices, to compare 
the relative importance of each pair of input variables. At last, the expected Sobol’ indices are introduced for ranking the 
input variables. For estimating the proposed GSA indices, a numerical method called extended Monte Carlo simulation 
(EMCS) is introduced, whose computational cost is the same with the classical MCS procedure for estimating the Sobol’ 
indices. Then, for further reducing the computational burden, the Kriging surrogate model is introduced by combining with 
the EMCS procedure.

The rest of this paper is organized as follows. Section 2 reviews the second-order probability model. Second 3 recalls the 
classical Sobol’ indices. Section 4 proposes the new GSA framework. Section 5 develops EMCS and Kriging-EMCS methods 
for estimating the proposed GSA indices. Section 6 introduces three numerical examples to illustrate the proposed method. 
Section 7 applies the proposed methods to a planar ten-bar structure. Section 8 gives conclusions.

2. Problem statement

For a random input variable x with PDF p(x; θ) and a set of scarce data x( j) ( j = 1, 2, . . . , N), many methods in statistics 
are available for estimating the distribution parameters θ . The commonly used ones include interval estimation approach 
and Bayesian updating approach. When the Bayesian updating approach is applied, the likelihood function should be firstly 
derived, i.e.,

L(θ) ∝
N∏

j=1

p
(
x( j); θ)

(1)

If the available data are inaccurate and characterized by intervals, one can refer to Ref. [26] for a more general form of 
the likelihood function. The maximum likelihood estimates (MLEs) of θ can then be obtained by maximizing the likelihood 
function in Eq. (1). However, the MLE cannot reflect the epistemic uncertainty of x resulting from incompleteness of data. 
The epistemic uncertainty of x can only be reflected by the uncertainty presented in θ . By choosing a prior PDF f ′

Θ(θ), 
following the Bayes’ formula, the posteriori PDF fΘ(θ) can be derived as:

fΘ(θ) = L(θ) f ′
Θ(θ)∫

L(θ) f ′
Θ(θ)dθ

(1)
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