RTICI E IN

[International Journal of Approximate Reasoning](https://doi.org/10.1016/j.ijar.2018.04.008) ••• (••••) •••-•••

1 Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/) 1

International Journal of Approximate Reasoning $4 \rightarrow 2$ 111 111 111 111 111 111 111 11

www.elsevier.com/locate/ijar 8 8

9 9 10

 14

20 20

11 Ilnner and lower probabilistic proferences in the graph model 11 $\frac{11}{12}$ Upper and lower probabilistic preferences in the graph model $\frac{11}{12}$ 13 for conflict resolution and the set of the

15 Leandro Chaves Rêgo ^{a, b,}∗, Andrea Maria dos Santos ^c and a ser a se 16

17 17 ^a *Statistics and Applied Math Department, Universidade Federal do Ceará, Fortaleza, CE, 60455-760, Brazil*

18 18 ^b *Graduate Programs in Statistics and Management Engineering, Universidade Federal de Pernambuco, Recife, PE, Brazil*

19 19 ^c *Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco, Ipojuca, PE, 55590-000, Brazil*

22 22 A R T I C L E I N F O A B S T R A C T

Article history: Received 24 November 2017 Received in revised form 8 March 2018 Accepted 24 April 2018 Available online xxxx *Keywords:* Conflict

- Graph model Stability notions
-
- Upper and lower probabilities Preference uncertainty
- Imprecise probabilistic preferences

21 \therefore \triangleright \ldots \triangleright ζ $\stackrel{\frown}{\ldots}$ ζ $\$

²³ Article history: **Example 20** 23 Me propose a model where decision makers may express their preferences among the 24 24 possible conflict scenarios using upper and lower probabilities in the graph model for 25 Received in revised form 8 March 2018 **conflict resolution (GMCR).** In this new model, we propose eight stability definitions 25 26 Accepted 24 April 2018

(solution concepts) that are generalizations of the four stability concepts commonly 26 27 27 used in the GMCR model, namely: cautious *α*-Nash stability, risky *α*-Nash stability, cau-28 $\overline{K_{\text{E} \text{X} \text{W} \text{or} \text{or} \text{or}}}$ tious (α, β) -metarationality, risky (α, β) -metarationality, cautious (α, β) -symmetric meta-29 29 rationality, risky *(α,β)*-symmetric metarationality, cautious *(α,β, γ)*-sequential stability 30 Graph model **and risky** (α, β, γ)-sequential stability. We present these definitions for conflicts with two 3c 31 Stability notions componed of more decision makers and also for conflicts in which the decision makers act as a coali-32
Preference uncertainty
one intervals the stability analysis using the proposed model to illustrate the gains obtained when in-³³ Imprecise probabilistic preferences and twiding are allowed to have the uncertainty about their own preferences expressed by 34 34 upper and lower probabilities. tion and analyze the relationship between them. We present two applications and perform

35 35 © 2018 Elsevier Inc. All rights reserved.

40 40 **1. Introduction**

42 42 A *strategic conflict* is a situation involving two or more parties, who may, for example, be individuals, companies, countries ⁴³ or teams, and these parties, usually called decision makers (DMs), have to make choices [\[1\]](#page--1-0). The choices made by the DMs ⁴³ ⁴⁴ involved determine the conflict evolution and what are the possible scenarios that may arise, usually called states. Finally, ⁴⁴ ⁴⁵ each DM has preferences over the final conflict state, or resolution. Negotiation processes and conflicts are modeled and ⁴⁵ ⁴⁶ analyzed with perspectives coming from different fields, such as: operations research, computer science, psychology, political ⁴⁶ ⁴⁷ economy, systems engineering, social choice theory and game theory. Thus, there are conflict models used to determine how ⁴⁷ ⁴⁸ to design a reliable and efficient e-negotiation system [\[2\]](#page--1-0) and also to improve our knowledge regarding the role of emotions 48 49 49 in negotiations [\[3\]](#page--1-0).

36 36 37 37 38 38 зэрэг тоо хотоос тоо хотоос тогтоос за
Заранта тогтоос тогтоо

⁵⁰ Fundamental aspects that have to be considered in the construction of a conflict model are to determine who are the ⁵⁰ ⁵¹ DMs involved in the conflict, what are their available options and how to model their preferences over the possible conflict ⁵¹ 52 resolutions. The Graph Model for Conflict Resolution (GMCR) is a relevant and simple technique, based on some important 52 53 game theoretical concepts [\[4\]](#page--1-0), to represent conflicts. It was presented by Kilgour et al. [\[5\]](#page--1-0), and is an enhancement of the 53 ⁵⁴ conflict analysis of Fraser and Hipel [\[6\]](#page--1-0) and metagames analysis [\[7\]](#page--1-0). In this model, considering the options available to ⁵⁴ 55 55

59 59 <https://doi.org/10.1016/j.ijar.2018.04.008>

41 41 56 56 61 61

⁵⁷ 57 * Corresponding author at: Statistics and Applied Math Department, Universidade Federal do Ceará, Fortaleza, CE, 60455-760, Brazil. 58 58 *E-mail addresses:* leandro@dema.ufc.br (L.C. Rêgo), andrea.ufpe@hotmail.com (A.M. dos Santos).

 60 $^{0888-613\chi/\odot}$ 2018 Elsevier Inc. All rights reserved. 60

ARTICLE IN PRESS

2 *L.C. Rêgo, A.M. dos Santos / International Journal of Approximate Reasoning* ••• *(*••••*)* •••*–*•••

¹ those involved in a conflict, there is a set of states that can happen during its course. Individuals or institutions involved ¹ 2 in a conflict, called DMs, have preferences over the set of possible states [\[8\]](#page--1-0). There is a collection of graphs in the GMCR, $\,$ 2 3 3 where each one of them represents the movements that a single DM can make from a state to another.

4 4 Once the conflict model that will be used is defined, the next step is to perform the stability analysis. This analysis is a 5 5 fundamental and useful tool to better understand the possible conflict interactions. There are different stability definitions. 6 In GMCR models, the usual stability notions are: Nash stability (R) [\[9,10\]](#page--1-0), general metarationality (GMR) [\[7\]](#page--1-0), symmetric 6 7 metarationality (SMR) [\[7\]](#page--1-0), sequential stability (SEQ) [\[6\]](#page--1-0) and when there are more than two DMs, their coalitional counter- $\,$ 7 ⁸ parts are also analyzed [\[11\]](#page--1-0). According to each one of these definitions a state may be stable or not. In general, a state is 8 9 9 stable if no DM has incentives to move away from it according to some criteria. DMs' preferences have a key role in the ¹⁰ stability analysis, since their preferences over the states directly affect the incentives for moving from one state to another. ¹⁰ ¹¹ However, in some cases, these preferences are imprecise. Some generalizations of the GMCR try to model preference charac- ¹¹ ¹² teristics that can better represent real world conflicts. In these works, different preference structures are used. For example, ¹² ¹³ preference uncertainty for two-DM and multi-DM conflicts in Li et al. [\[12\]](#page--1-0) and Li et al. [\[13\]](#page--1-0), respectively, fuzzy preferences ¹³ 14 14 in Al-Mutairi et al. [\[14\]](#page--1-0) and in Bashar et al. [\[15\]](#page--1-0) and degree of preferences in Hamouda, Kilgour and Hipel [\[16\]](#page--1-0). Using ¹⁵ probabilistic preferences is an alternative way to represent preference uncertainty. According to Campello de Souza [\[17\]](#page--1-0), the ¹⁵ ¹⁶ use of probabilistic preferences can better model the fluctuations of behavior usually present in the choices of individuals. ¹⁶ 17 17 Rêgo and Santos [\[18\]](#page--1-0) applied probabilistic preferences into the GMCR, allowing the DMs' preferences for one state *a* over 18 18 another state *b* to be represented by a precise probability *P(a, b)*. From now on, this case will be called *precise* probabilistic 19 19 preferences. Rêgo and Santos [\[18\]](#page--1-0) argued that probabilistic preferences have an advantage over fuzzy preferences in the ²⁰ sense that it can be estimated from observed choices made by the DM and also that due to its interpretation it can be more ²⁰ 21 21 easily elicited from experts.

22 22 However, in most real world conflicts information about one own preference may be vague or ambiguous and in such ²³ case requiring the existence of a unique probability distribution that models such preference is too demanding. The theory ²³ ²⁴ of imprecise probabilities generalizes standard probability theory to handle more accurately such situations [\[19\]](#page--1-0). Imprecise ²⁴ 25 probability is a term used to encompass many models of uncertain quantification, such as: upper and lower probabilities [\[20,](#page--1-0) 25 26 [21\]](#page--1-0), belief functions [\[22\]](#page--1-0), comparative probability orderings [\[23\]](#page--1-0) and upper and lower previsions [\[19\]](#page--1-0). Beer et al. [\[24\]](#page--1-0) provide 26 ²⁷ an overview of applications of Imprecise Probability models in engineering analysis and Fetz and Oberguggenberger [\[25\]](#page--1-0) ²⁷ ²⁸ propose methods to evaluate of upper and lower probabilities induced by functions of an imprecise random variable. Thus, ²⁸ ²⁹ there are two reasons that motivated us to extend the GMCR model with precise probabilistic preferences to use imprecise ²⁹ $^{\rm 30}$ probabilistic preferences. The first one is that using imprecise probabilistic preferences imposes less burden in the elicitation $^{\rm 30}$ ³¹ process of DMs' preference since it requires less information. The second one is that this model is able to describe risky and ³¹ 32 32 cautious behavior which are not possible using precise probabilistic preferences.

³³ In this work, we generalize the GMCR by modeling the DMs preferences using upper and lower probabilities [\[20\]](#page--1-0). The ³³ ³⁴ organization of the paper is as follows: in Section 2, a brief review of the GMCR and of the upper and lower probabilities ³⁴ ^{[3](#page--1-0)5} literatures is made; in Sections 3 and [4,](#page--1-0) the GMCR with upper and lower probabilistic preferences is proposed and new ³⁵ ³⁶ stability definitions for the proposed model are given. First, we present the model for bilateral conflicts, showing results on ³⁶ ³⁷ the relationships between the proposed stability definitions. Then, we extend the model for conflicts with multiple DMs and ³⁷ ³⁸ we also define how to perform a coalitional analysis; in Section [5,](#page--1-0) two applications of the proposed model are presented ³⁸ ³⁹ illustrating its potentiality; and in Section [6](#page--1-0) we finish with final comments. This work extends a preliminary work [\[26\]](#page--1-0). ³⁹ ⁴⁰ More specifically, it extends such model to represent conflicts with multiple DMs and also presents definitions to perform a ⁴⁰ ⁴¹ coalitional analysis using the proposed model. Moreover, Theorem [2](#page--1-0) formalizes the relationship between the proposed and ⁴¹ ⁴² the stability concepts of the GMCR with precise probabilistic preferences [\[18\]](#page--1-0).

43 43

45 45

44 44 **2. Review of literature**

⁴⁶ We start this section by reviewing the GMCR as defined by Kilgour et al. [\[5\]](#page--1-0). The GMCR consists of a set of graphs, one ⁴⁶ ⁴⁷ for each DM involved in the conflict, and for each one of these DMs a preference relation over the set of nodes or vertices ⁴⁷ ⁴⁸ of the graph. In each graph, the nodes represent the possible conflict resolutions, called states, and the arcs in the graph ⁴⁸ 49 49 of DM *i* represent the possible state changes that DM *i* is able to make in the course of the conflict. Thus, all graphs in 50 50 the GMCR have the same set of nodes and differ from each other only in what arcs are present. Formally, the set of DMs 51 is denoted by $N = \{1, 2, 3, ..., n\}$ and $S = \{1, 2, ..., s\}$ is the set of possible states or scenarios of a conflict. A collection of 51 52 directed graphs, $D_i = (S, A_i)$, $i \in N$, is used to model a conflict. Let $R_i(s)$ be the set of states to which DM *i* can move while 52 53 at state s, i.e., $R_i(s) = \{t \in S : (s, t) \in A_i\}$. As in Rêgo and Santos [\[18\]](#page--1-0), we assume that $s \in R_i(s)$, $\forall i \in N$ and $\forall s \in S$ since, in 53 54 54 any given state, DMs can always choose to keep the *status quo* not switching states.

55 The GMCR also makes use of a set of asymmetric binary relations, denoted by \succ_i , $i \in N$, which are interpreted as follows: 55 $x \succ_i y$, if object x is strictly preferred to object y for DM *i*. In general, such binary relation need not be transitive. We abuse 56 57 notation using *x*¹ *ⁱ x*² *ⁱ ... xm*−¹ *ⁱ xm* to represent DM *i*'s ranking of the objects, meaning that DM *i* strictly prefers *x*¹ to 58 each one of the other *m* − 1 objects and that *x*² is strictly preferred by *i* to each one of the other *m* − 2 objects which come 59 after it in the sequence, and so on.

 60 We aim to extend the GMCR by allowing DMs to have uncertainty about their own preferences and, moreover, such 60 61 61 uncertainty can be vague or imprecise. Download English Version:

<https://daneshyari.com/en/article/6858784>

Download Persian Version:

<https://daneshyari.com/article/6858784>

[Daneshyari.com](https://daneshyari.com)