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There is wide support in logic, philosophy, and psychology for the hypothesis that 
the probability of the indicative conditional of natural language, P (if A then B), is the 
conditional probability of B given A, P (B|A). We identify a conditional which is such 
that P (if A then B) = P (B|A) with de Finetti’s conditional event, B|A. An objection to 
making this identification in the past was that it appeared unclear how to form compounds 
and iterations of conditional events. In this paper, we illustrate how to overcome this 
objection with a probabilistic analysis, based on coherence, of these compounds and 
iterations. We interpret the compounds and iterations as conditional random quantities 
which, given some logical dependencies, may reduce to conditional events. We show how 
the inference to B|A from A and B can be extended to compounds and iterations of 
both conditional events and biconditional events. Moreover, we determine the respective 
uncertainty propagation rules. Finally, we make some comments on extending our analysis 
to counterfactuals.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

There is wide agreement in logic and philosophy that the indicative conditional of natural language, if A then B, cannot 
be adequately represented as the material conditional of binary logic, logically equivalent to �A ∨ B (not-A or B) [26]. Psy-
chological studies have also shown that ordinary people do not judge the probability of if A then B , P (if A then B), to be 
the probability of the material conditional, P (�A ∨ B), but rather tend to assess it as the conditional probability of B given 
A, P (B|A), or at least to converge on this assessment [5,28,30,55,70,71,83]. These psychological results have been taken 
to imply [5,29,41,64,71,72], that if A then B is best represented, either as the probability conditional of Adams [3], or as 
the conditional event B|A of de Finetti [21,22], the probability of which is P (B|A). We will adopt the latter view in the 
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present paper and base our analysis on conditional events and coherence (for related analyses, specifically on categorical 
syllogisms, squares of opposition under coherence and on generalized argument forms see [42,77,76,82]). One possible ob-
jection to holding that P (if A then B) = P (B|A) is that it is supposedly unclear how this relation extends to compounds of 
conditionals and makes sense of them [24,26,87]. Yet consider:

a︷ ︸︸ ︷
She will be angry if

b︷ ︸︸ ︷
her son gets a B and

f︷ ︸︸ ︷
she will be furious if

c︷ ︸︸ ︷
he gets a C . (1)

The above conjunction appears to make sense, as does the following seemingly even more complex conditional construction 
[24]:

If she will be angry if her son gets a B, then she will be furious if he gets a C. (2)

We will show below, in reply to the objection, how to give sense to (1) and (2) in terms of compound conditionals. Specif-
ically, we will interpret (1) as a conjunction of two conditionals (a|b and f |c) and (2) in terms of a conditional whose 
antecedent (a|b) and consequent ( f |c) are both conditionals (if a|b, then f |c). But we note first that the iterated condi-
tional (2) validly follows from the conjunction (1) by the form of inference we will call centering which, as we will show, 
can be extended to the compounds of conditionals (see Section 3 below). We point out that our framework is quantitative 
rather than a logical one. Indeed in our approach, syntactically conjoined and iterated conditionals in natural language are 
analyzed as conditional random quantities, which can sometimes reduce to conditional events, given logical dependencies 
([47,50]). For instance, the biconditional event A||B , which we will define by (B|A) ∧ (A|B), reduces to the conditional 
(A ∧ B)|(A ∨ B). Moreover, the notion of biconditional centering will be given.

The outline of the paper is as follows. In Section 2 we give some preliminaries on the notions of coherence and p-
entailment for conditional random quantities, which assume values in [0, 1]. In Section 3, after recalling the notions of 
conjoined conditional and iterated conditional, we study the p-validity of centering in the case where the basic events are 
replaced by conditionals. In Section 4 we give some results on coherence, by determining the lower and upper bounds 
for the conclusion of two-premise centering; we also examine the classical case by obtaining the same lower and upper 
bounds. In Section 5, after recalling the classical biconditional introduction rule, we present an analogue in terms of condi-
tional events (biconditional AND rule); we also obtain one-premise and two-premise biconditional centering. In Section 6 we 
determine the lower and upper bounds for the conclusion of two-premise biconditional centering. In Section 7 we investi-
gate reversed inferences (i.e., inferences from the conclusion to its premises), by determining the lower and upper bounds 
for the premises of the biconditional AND rule. Section 8 sketches how to apply results of this paper to study selected 
counterfactuals, and remark that the Import-Export Principle is not valid in our approach which allows us to avoid Lewis’ 
notorious triviality results. Section 9 concludes with some remarks on future work. Further details which expand Section 2
are given in Appendix A.

2. Some preliminaries

The coherence-based approach to probability and to other uncertain measures has been adopted by many authors (see, 
e.g., [7,8,12–18,38,49,71,88]); we recall below some basic aspects on the notions of coherence and of p-entailment. In 
Appendix A we will give further details on coherence of probability and prevision assessments.

2.1. Events and constituents

In our approach events represent uncertain facts described by (non ambiguous) logical propositions. An event A is a 
two-valued logical entity which is either true (T ), or false (F ). The indicator of an event A is a two-valued numerical 
quantity which is 1, or 0, according to whether A is true, or false, respectively, and we use the same symbol to refer to 
an event and its indicator. We denote by � the sure event and by ∅ the impossible one (notice that, when necessary, the 
symbol ∅ will denote the empty set). Given two events A and B , we denote by A ∧ B the logical intersection, or conjunction, 
of A and B; moreover, we denote by A ∨ B the logical union, or disjunction, of A and B . To simplify notations, in many 
cases we denote the conjunction of A and B (and its indicator) as AB; of course, AB coincides with the product of A and 
B . We denote by �A the negation of A. Of course, the truth values for conjunctions, disjunctions and negations are obtained 
by applying the propositional logic. Given any events A and B , we simply write A ⊆ B to denote that A logically implies B , 
that is A�B = ∅, which means that A and �B cannot both be true.

Given n events A1, . . . , An , as Ai ∨ �Ai = � , i = 1, . . . , n, by expanding the expression 
∧n

i=1(Ai ∨ �Ai), we obtain

� =
n∧

i=1

(Ai ∨ �Ai) = (A1 · · · An) ∨ (A1 · · · An−1 �An) ∨ · · · ∨ (�A1 · · ·�An);

that is the sure event � is represented as the disjunction of 2n logical conjunctions. By discarding the conjunctions which 
are impossible (if any), the remaining ones are the constituents generated by A1, . . . , An . Of course, the constituents are 
pairwise logically incompatible; then, they are a partition of �. We recall that A1, . . . , An are logically independent when 
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