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Maximum likelihood is a standard approach to computing a probability distribution that 
best fits a given dataset. However, when datasets are incomplete or contain imprecise data, 
a major issue is to properly define the likelihood function to be maximized. This paper 
highlights the fact that there are several possible likelihood functions to be considered, 
depending on the purpose to be addressed, namely whether the behavior of the imperfect 
measurement process causing incompleteness should be included or not in the model, and 
what are the assumptions we can make or the knowledge we have about this measurement 
process. Various possible approaches, that differ by the choice of the likelihood function 
and/or the attitude of the analyst in front of imprecise information are comparatively 
discussed on examples, and some light is shed on the nature of the corresponding 
solutions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The key role of likelihood functions in statistical inference was first highlighted by Fisher [16] with the maximum likeli-
hood principle. In his seminal book, Edwards ([15], p. 9) defines a likelihood function as being proportional to the probability 
of obtaining results given a hypothesis, according to a probability model:

Let P (R|H) be the probability of obtaining results R given the hypothesis H , according to the probability model . . . The 
likelihood of the hypothesis H given data R , and a specific model, is proportional to P (R|H), the constant of proportion-
ality being arbitrary.

Edwards mentions that “this probability is defined for any member of the set of possible results given any one hypothesis 
. . . As such its mathematical properties are well-known. A fundamental axiom is that if R1 and R2 are two of the possible 
results, mutually exclusive, then P (R1orR2|H) = P (R1|H) + P (R2|H)”.

✩ This paper is part of the Virtual special issue on Soft Methods in Probability and Statistics, edited by Barbara Vantaggi, Maria Brigida Ferraro, Paolo 
Giordani.
✩✩ A preliminary version of this paper [7] was presented at the 8th Conference on Soft Methods in Probability and Statistics (SMPS) in Roma, September, 
12–14, 2016.
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In other words, a fundamental axiom is that the probability of obtaining at least one among two results is the sum 
of the probabilities of obtaining each of these results. In particular, a result in the sense of Edwards is not any kind of 
event, it is an elementary event. Only elementary events can be observed. For instance, when tossing a die, and seeing the 
outcome, you cannot observe the event “odd”, you can only see 1, 3 or 5. So, a likelihood function is proportional to the 
conditional probability of an elementary event (the observed sample), where the condition part (the hypothesis) is a value 
of some model parameter. For instance, the conditional probability of the sure event cannot be viewed as the likelihood of 
the hypothesis given the sure event.

If this point of view is accepted, what becomes of the likelihood function under incomplete or imprecise observations? 
To properly answer this question, one must understand what is a result in this context. Namely, if we are interested in a 
certain random phenomenon modeled by a random variable, observations we get in this case may not directly inform us 
about this random variable. Due to the interference with an imperfect measurement process, observations will be set-valued 
[4,5]. So, in order to properly exploit such incomplete information (called coarse data in the literature [21]), we must first 
decide what to model:

1. the random phenomenon through its measurement process;
2. or the random phenomenon despite its measurement process.

In the first case, imprecise observations are considered as results, and we can construct the likelihood function of a random 
set, whose realizations are sets. These sets contain precise but ill-known realizations of the random variable of interest, 
to which we have no direct access. We say that this unreachable random variable is latent. Actually, most authors are 
interested in the other point of view. They consider that outcomes are the precise, although ill-observed, realizations of the 
random phenomenon, and wish to reconstruct a distribution for the latent variable. However in this case there are as many 
potential likelihood functions as precise datasets in agreement with the imprecise observations. Authors have proposed 
several ways of addressing this issue. The most traditional approach is based on the EM algorithm [11,29,13], which is an 
iterative procedure for efficient maximization of the likelihood of observed data. It constructs a distribution on the latent 
variable that minimizes divergence from the parametric model in agreement with the available data. It can also serve to 
reconstruct a sample of the latent variable.

In this paper, we propose a formal setting for the modeling of imprecisely observed random experiments, and define the 
three likelihood functions that can be built in this framework. Apart from the likelihood function based on available obser-
vations, there is the likelihood function based on outcomes of the latent random variable that was imprecisely observed, and 
the likelihood function based on the joint probability induced by pairs of outcomes and their measurement. The two latter 
likelihood functions are imprecisely known and we compare several alternatives to the maximization of the likelihood of 
imprecise observations, such as the maximax approach, and the robust approach to incomplete data. It includes more recent 
proposals by Hüllermeier [22], or Guillaume and Dubois [18], or Plass et al. [35]. We also discuss the use of assumptions 
on the measurement process such as the coarsening-at-random [21] and the superset assumptions, that help relating the 
various likelihood functions. Note that in this paper we do not consider the issue of imprecision due to too small a number 
of precise observations (see for instance, Masson and Denœux [32], or Serrurier and Prade [44]). We assume that the cause 
of imprecision lies in the incomplete description of the random experiment outcomes, not in the scarcity of observations.

2. The random phenomenon and its measurement process

Let a random variable X : � → X represent the outcome of a certain random experiment. For the sake of simplicity, let 
us assume that its range X = {a1, . . . , am} is finite. Suppose that observations of X are imprecise, namely let � : � → ℘(X )

denote the (observable) multi-valued mapping representing our (imprecise) perception of X . So, if ω occurs then all we 
know is that X(ω) ∈ �(ω) ⊆ X . In other words, we assume that X is a selection of �, i.e. X(ω) ∈ �(ω), ∀ ω ∈ �. This 
setting is very close to the one of Dempster [10] who introduces a special case of upper and lower probabilities, based 
on random sets, later interpreted by Shafer [45] as belief and plausibility functions. The issue of set-valued data has been 
discussed in Ref. [5] from the point of view of descriptive statistics. In this paper we start addressing inferential statistics.

Let Im(�) = {A1, . . . , Ar} ∈ ℘(X ) denote the image of � (the collection of possible set-valued outcomes). We can 
equivalently suppose that the imperfect measurement process is driven by another random variable Y , with finite range 
Y = {b1, . . . , br}, that provides incomplete reports of observations of X . Namely, Y (ω) = b j means that the measurement 
tool reports �(ω) = A j . The cardinality of the image of Im(Y ) =Y = {b1, . . . , br} thus coincides with that of Im(�) and then 
there is a bijection between Im(�) and Y as follows:

Y (ω) = b j iff �(ω) = A j, j = 1, . . . , r,

or yet we can assume that b j = A j . Let P (X, Y ) be the joint probability describing X and its measurement.
In some applications, the variable X is made of two components Xo and Xu respectively corresponding to observed and 

unobserved variables with respective domains Xo and Xu , and � is of the form {Xo} ×�u , i.e., Y = {{X0} ×�u}. The observed 
variable Y can then be identified with the random vector Y = (Xo, Yu), where Yu = �u .

This framework highlights the difference between the outcome X = ak (its probability is P (X = ak)), the fact that event 
A j occurs whenever the outcome X = ak belongs to A j (its probability is P (X ∈ A j)), and observing the result A j via the 
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