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Learning parameters associated with propositions is one of the main tasks of probabilistic 
logic programming (PLP), and learning algorithms for PLP have been primarily developed 
based on maximum likelihood estimation or the optimization of discriminative criteria. 
This paper explores yet another innovative approach to parameter learning, learning to 
rank or rank learning, that has been studied mainly in the field of preference learning. We 
combine learning to rank with techniques developed in PLP to make the latter applicable 
to a variety of ranking problems such as information retrieval. We implement our approach 
in PRISM, a PLP system based on the distribution semantics. It supports many parameter 
learning algorithms such as the expectation maximization algorithm, the variational Bayes 
algorithm and an algorithm for Viterbi training efficiently by mapping them onto a single 
data structure called explanation graph. To ensure the same efficiency for parameter 
learning by learning to rank as in the current PRISM, we introduce a gradient-based 
learning method that takes advantage of dynamic programming on the explanation graph. 
This paper also presents three experimental results. The first one is with synthetic data to 
check the learning behaviors of the proposed approach. The second one uses a knowledge 
base (knowledge graph) and apply rank learning to a DistMult model for the task of 
deciding whether relations over entities exist or not. The last one tackles the problem 
of parsing by a probabilistic context free grammar whose parameters are learned from a 
tree corpus by rank learning. These experiments successfully demonstrated the potential 
and effectiveness of learning to rank in PLP. We plan to release a new version of PRISM 
augmented with the ability of learning to rank in the near future.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

One of the main roles of probabilistic logic programming (PLP) is to provide a high-level interface for statistical model-
ing based on the flexible and expressive framework of logic programming. Two core elements in statistical modeling are 
learning parameters of models and probabilistic inference using learned models. Existing PLP systems such as Alchemy [15]
(an implementation of Markov logic networks [18]), ProbLog [11], ProPPR [31], and PRISM [22] all provide these elements 
and achieve flexible modeling supported by efficient computation for the parameter learning and probabilistic inference. 
Traditional parameter learning in PLP has been realized by optimizing data fitting criteria be they discriminative or gener-
ative, and discriminative models which usually show better performance than generative counterparts require positive and 
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negative examples to learn parameters. Learned parameters are used to judge whether given data is positive or negative. 
However, in real world applications such as document retrieval, judging dichotomically whether a retrieved document is 
positive (correct) or negative (wrong) is difficult or even harmful. In such situations, giving preference by a preference pair, 
representing which one is preferred in the pair, is an effective alternative. An approach to learning parameters from a set 
of preference pairs is called (pair-wise) “learning to rank” in the field of preference modeling. Learning to rank is frequently 
used together with “ranking” entities, inference of the ranks of entities, in a plethora of information retrieval applications 
including collaborative filtering, question answering, multimedia retrieval, text summarization, and online advertising [16]. 
To support these broad applications, a variety of approaches for preference modeling have been developed [7,6,2,35,16] and 
we can choose a model most suitable for applications and data to use. We contribute to PLP by extending the scope of 
PLP to preference modeling with rank learning. Also, at the same time, we contribute to the development of ranking ap-
plications by providing an expressive logic-based framework for preference modeling. In the traditional preference learning, 
relationships such as is-a, part-of and transitive closure between properties and those between objects are not necessarily 
taken into account. In the logic based approach, they are naturally handled by logical expressions built up from predicates 
and variables.

Every PLP language requires a semantics to connect probability with a logic programming language. The distribution 
semantics [20] is one of the most prominent semantics in PLP. For example, PRISM [22], ICL [17], ProbLog [4] and LPAD 
[30] are based on this semantics. This paper focuses on PRISM which realizes a variety of probabilistic modeling techniques 
based on a single data structure called explanation graph. It compactly encodes all possible proof trees for a query. In 
PRISM, using dynamic programming on explanation graphs, a broad range of machine learning algorithms from genera-
tive/discriminative parameter learning to Viterbi inference to Markov chain Monte Carlo (MCMC) is efficiently implemented 
under the distribution semantics. In this paper we introduce a mechanism of learning to rank or rank learning to PRISM, 
thereby merging preference modeling with logic-based probabilistic modeling. We also demonstrate two applications with 
real data. One is link prediction in a knowledge base (knowledge graph) and the other probabilistic parsing for a tree corpus 
of Japanese sentences. In traditional approaches, these tasks are handled with different notations and different data struc-
ture. For example, a knowledge graph is often represented by as a set of triples encoding relations between subjects and 
objects while a tree corpus of sentences is usually represented as a set of parse trees. Our logic-based approach uniformly 
represent them in terms of logical expressions.

The most closely related work to our work is ProPPR [31], a PLP system for question answering. Given a query q(a,X), 
it returns an answer substitution for the variable X using a probabilistic logic programming framework based on features. 
Roughly speaking, learning data in ProPPR is a set of triplets (q(a,X), q(a,right_answer), q(a,wrong_answer))
specifying that the right_answer is preferred to the wrong_answer as a substitution for X in a query q(a,X). Parame-
ters (weights) associated with features that determine right/wrong are learned by a sophisticated learning algorithm applied 
to SLD proof trees for q(a,X) obtained by sampling. The target of ProPPR is to solve such question answering and prefer-
ence learning is specialized to this purpose. Since ProPPR adopts a specific parameterization different from parameterization 
suitable for the distribution semantics, it is hard to directly compare with PRISM at semantic level or implementation level. 
We may say however that unlike ProPPR, PRISM is a general programming language supporting multiple machine learning 
methods from conventional ones such as the expectation maximization (EM) algorithm [21], the variational Bayes (VB) al-
gorithm [23], an algorithm for Viterbi training (VT) [24] and MCMC [19] to a non-conventional one, i.e., parameter learning 
by learning to rank. Our contributions thus include the introduction of a natural extension of conventional parameteriza-
tion suitable for learning to rank and the integration of learning to rank with the other conventional parameter learning 
frameworks into one system.

Now we explain what is targeted in this paper. Ranking entities can be achieved by sorting entities in the order of their 
scores computed by a scoring function. The scoring function has parameters and in learning to rank, those parameters are 
trained by ordered data, typically given as a set of preference pairs. Our fundamental idea is to equate an entity with a 
Prolog’s goal, i.e., a ground atom, and a scoring function with a (log) probability of the goal. For example, if goal(a1) is 
considered better than goal(a2), a higher probability would be assigned to goal(a1) than the probability assigned to
goal(a2). We prefer to only impose constraints on the order of ground atoms rather than forcibly bring the probability 
of positive examples closer to one while negative ones closer to zero. We embody this idea in PRISM.

The first thing to do is to tackle a problem of learning parameters by learning to rank from training data consisting of 
a set of lists of ranked goals. For example, given [[goal(a1),goal(a2)], [goal(a2),goal(a3)]], using a model 
written as a PRISM program, we have to learn parameters so that a set of conditions {P(goal(a1))>P(goal(a2)), 
P(goal(a2))>P(goal(a3))} are satisfied.

Note that this setting is different from the ProPPR’s learning setting mentioned above. ProPPR is designed to learn 
the preference of substitutions for a query from triplets of the form (q(a,X),q(a,right_answer),q(a,wrong_an-
swer)). In contrast, PRISM learns parameters from pairs of propositions (ground atoms) and they can have different 
predicates; thus, a list [q1(a,right_answer), q2(a,wrong_answer)] means that the q1(a,right_answer)
is preferred to the q2(a,wrong_answer). Since this parameter learning setting is compatible with the usual learning 
setting of PRISM (Section 4), our rank learning is applicable to any generative model written in PRISM. Later we will show 
examples of generative modeling with learning to rank using a hidden Markov model (HMM) and a probabilistic context-free 
grammar (PCFG) in Section 4 and Section 5.
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