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We propose Simple Propagation (SP) as a new join tree propagation algorithm for exact 
inference in discrete Bayesian networks. We establish the correctness of SP. The striking 
feature of SP is that its message construction exploits the factorization of potentials at a 
sending node, but without the overhead of building and examining graphs as done in Lazy 
Propagation (LP). Experimental results on optimal (or close to optimal) join trees built from 
numerous benchmark Bayesian networks show that SP is often faster than LP.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks (BNs) [1] are an elegant approach to uncertainty management. By blending probability theory and 
graph theory, these probabilistic graphical models provide a rigorous foundation for making rationale decisions. A BN con-
sists of a directed acyclic graph (DAG) and a set of conditional probability tables (CPTs) matching the structure of the DAG. 
Each node in the DAG represents a random variable in the problem domain being modeled, while the edges of the DAG 
encode probabilistic conditional independence information. Since the product of the CPTs is a joint probability distribution, 
sound inference algorithms answer a query by manipulating the CPTs to yield the same correct result that would have been 
obtained had the query been answered directly from the joint probability distribution.

Join tree propagation (JTP) is central to the theory and practice of probabilistic expert systems [2]. Here, exact inference 
in a discrete BN is conducted on a secondary structure, called a join tree, built from the directed acyclic graph of a BN. 
Even though the computational and space complexity of JTP is exponential in the tree-width of the network, in general, we 
care not about the worse case, but about the cases we encounter in practice [3]. For real-world BNs, several JTP approaches 
appear to work quite well. Given observed evidence, messages are systematically propagated such that posterior probabilities 
can be computed for every non-evidence variable. More specifically, each BN CPT, having been updated with observed 
evidence, is assigned to precisely one join tree node containing its variables. Classical JTP algorithms [2] form one potential 
per node by multiplying together the tables at each node.
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Fig. 1. A BN extended from [4].

In contrast, Lazy Propagation (LP) [4,5] keeps a multiplicative factorization of potentials at each node. This allows LP to 
remove two kinds of irrelevant potentials during message construction. Irrelevant potentials involving barren variables [4]
are removed first from the factorization. Next, irrelevant potentials based on testing independencies induced by evidence 
are removed from the factorization. Here, a potential is irrelevant if and only if certain variables are separated in the 
moralization Gm

1 of the domain graph [5] G1 built from the factorization. In the remaining relevant potentials, all variables 
not appearing in the separator need to be marginalized away. The order in which these variables are marginalized, called an 
elimination ordering [6], is determined by examining the moralization Gm

2 of the domain graph G2 built from the factorization 
of relevant potentials. The resulting factorization is the message propagated.

In this paper, we propose Simple Propagation (SP) as a new JTP algorithm for exact inference in discrete BNs. SP consists 
of three steps. First, remove irrelevant potentials based on barren variables. Second, while the factorization at a sending 
node contains a potential with a non-evidence variable in the separator and another not in the separator, then the latter 
must be marginalized away. Third, propagate only those potentials exclusively containing variables in the separator. We 
establish the correctness of SP. Thus, SP is equivalent to LP, but without following key tenets of LP. SP never explicitly tests 
independencies, nor does it determine elimination orderings. This means SP saves the overhead of having to build and 
examine graphs. In experimental results on 28 benchmark cases, SP is faster than LP in 18 cases, ties LP in 5 cases, and is 
slower than LP in 5 cases.

This paper extends our seminal work on SP [7] in several ways. We establish that the relevant potentials in SP are exactly 
those in LP [8]. This is a stronger result that in [7], where it was only shown that SP is equivalent to LP. We propose and 
evaluate eight heuristics for determining elimination orderings in SP [8]. Our experimental results suggest that heuristics do 
not help SP run faster in optimal join trees [9]. We also investigate the role the type of join tree plays in SP inference. The 
performance of SP degrades dramatically when non-optimal join tree are used [10]. The use of heuristics do not help SP in 
non-optimal join trees either. Thereby, SP’s clear advantage over LP relies on the use of optimal join trees.

This paper is organized as follows. Section 2 reviews BNs. SP is introduced in Section 3. Its correctness is established 
in Section 4. We establish a one-to-one correspondence between the relevant potentials in SP and LP in Section 5. An 
empirical comparison of SP versus LP on optimal join trees is reported in Section 6. Section 7 presents heuristics for SP and 
we empirically evaluate the heuristics in optimal join trees. We analyze the performance of SP in non-optimal join trees in 
Section 8. Section 9 empirically analyzes heuristics for SP in non-optimal join trees. Conclusions are drawn in Section 10.

2. Background

Let U = {v1, v2, . . . , vn} be a finite set of variables, each with a finite domain, and V be the domain of U . A potential on 
V is a function φ such that φ(v) ≥ 0 for each v ∈ V , and at least one φ(v) > 0. Henceforth, we say φ is on U instead of V . 
A joint probability distribution is a potential P on U , denoted P (U ), that sums to one. For disjoint X, Y ⊆ U , a conditional 
probability table (CPT) P (X |Y ) is a potential over X ∪ Y that sums to one for each value y of Y . For simplified notation, 
{v1, v2, . . . , vn} may be written as v1 v2 · · · vn , and X ∪ Y as XY .

A Bayesian network (BN) [1] is a directed acyclic graph (DAG) B on U together with CPTs P (v1|Pa(v1)), P (v2|Pa(v2)), . . . ,

P (vn|Pa(vn)), where Pa(vi) denotes the parents (immediate predecessors) of vi in B. For example, Fig. 1 depicts a BN, 
where CPTs P (a), P (b|a), . . . , P (m|g, l) are understood. We call B a BN, if no confusion arises. The product of the CPTs for 
B on U is a joint probability distribution P (U ).

The conditional independence [1] of X and Z given Y holding in P (U ) is denoted I(X, Y , Z), where X , Y , and Z are 
pairwise disjoint subsets of U . If needed, the property that I(X, Y , Z) is equivalent to I(X − Y , Y , Z − Y ) [1] can be applied 
to make the three sets pairwise disjoint; otherwise, I(X, Y , Z) is not well-formed.

There are different types of probabilistic inference that one might be interested in, including belief update, finding most 
probable explanation (MPE), and finding maximum a-posterior hypothesis (MAP) [3]. Moreover, queries can be classified 
into different sessions [11]. In a diagnostic setting, query variables tend to be at the “top” of the BN, while in a prediction 
setting query variables tend to be at the “bottom” of the BN. Another setting, called incremental, is when evidence is 
received incrementally, while the query variables remain the same. In sensitivity analysis, the query variables remain the 
same, but the evidence can be incremental or even completely different. In this paper, we focus on belief update, namely, 
computing posterior probabilities after other variables have been observed as evidence.

A join tree [2] is a tree with sets of variables as nodes, and with the property that any variable in two nodes is also in 
any node on the path between the two. The separator [2] S between any two neighboring nodes Ni and N j is S = Ni ∩ N j . 
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