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Directed separation (d-separation) played a fundamental role in the founding of Bayesian 
networks (BNs) and continues to be useful today in a wide range of applications. Given 
an independence to be tested, current implementations of d-separation explore the active
part of a BN. On the other hand, an overlooked property of d-separation implies that 
d-separation need only consider the relevant part of a BN. We propose a new method 
for testing independencies in BNs, called relevant path separation (rp-separation), which 
explores the intersection between the active and relevant parts of a BN. Favourable 
experimental results are reported.

© 2017 Published by Elsevier Inc.

1. Introduction

Directed separation (d-separation) [1] continues to be useful in a wide range of areas, including causal inference in 
statistics [2], cause and correlation in biology [3], extrapolation across populations [4], handling missing data [5], bioin-
formatics [6], and deep learning [7]. The d-separation algorithm is a graphical method for determining which conditional 
independence relations are implied by the directed acyclic graph (DAG) of a Bayesian network (BN) [1]. With respect to a 
given independence to be tested, current implementations, including Bayes-Ball [8] and Reachable [9], find all nodes reach-
able along active paths, called the active part of a BN. [10] was the first linear method for testing independencies in a 
BN. [8] emphasizes that improvements can still be made upon the linear method in [10]. However, the current implemen-
tations overlook a crucial property of d-separation, described next. Another method for testing independencies in BNs is 
m-separation [11]. In the proof of correctness, it is established that all active paths of interest can only appear in what we 
call the relevant part of a BN. Roughly speaking, the relevant part of a BN for a given independence is the set of variables 
in the independence statement together with their ancestors. This property warrants attention in itself, since it has both 
theoretical and practical ramifications.

In this paper, we propose relevant path separation (rp-separation) as a new method for testing independencies in BNs. 
The salient feature of rp-separation is that it explores the intersection between the active and relevant parts of a BN. 
We introduce the notion of a relevant path and establish that irrelevant paths are either active paths that are doomed to 
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Fig. 1. (i) Testing independence I(a, e, g) in a Bayesian network B; (ii) the active part of B; (iii) the relevant part of B; (iv) the intersection of the active 
and relevant parts.

become blocked or active paths that terminate before reaching a variable of interest. Rather than exploring all active paths, 
rp-separation displays impressive performance in practice by only exploring active paths that are relevant. In real-world or 
benchmark BNs, rp-separation is faster in 17 of 19 cases with an average time savings of 53%, culminating with being nearly 
twice as fast in the largest BN.

This paper extends our seminal work on i-separation [12]. Whereas i-separation avoids traversing one type of irrelevant 
path, rp-separation [13] avoids traversing all irrelevant paths. This paper adds to the theoretical foundation of rp-separation 
by providing proofs of Lemma 1 and Theorem 5. Lastly, we compare rp-separation with Bayes-Ball, a simple algorithm often 
used in practice to test independencies in BNs. Our experimental results suggest that rp-separation is faster than Bayes-Ball 
especially in large BNs.

This paper is organized as follows. Section 2 gives background information. We propose rp-separation in Section 3. 
Section 4 includes an empirical evaluation and analysis. Section 5 compares rp-separation with Bayes-Ball. Conclusions are 
drawn in Section 6.

2. Background

Let U = {v1, v2, . . . , vn} be a finite set of variables. Let B denote a directed acyclic graph (DAG) on U . A directed path from 
v1 to vk is a sequence v1, v2, . . . , vk with directed edges (vi, vi+1) in B, i = 1, 2, . . . , k − 1. For each vi ∈ U , the ancestors of 
vi , denoted An(vi), are those variables having a directed path to vi . For a set X ⊆ U , we define An(X) in the obvious way. 
The children Ch(vi) and parents Pa(vi) of vi are those v j such that (vi, v j) ∈ B and (v j, vi) ∈ B, respectively. An undirected 
path in a DAG is a path ignoring directions. A directed edge (vi , v j) ∈ B may be written as (v j, vi) in an undirected path. 
A variable vk is called a v-structure [9] in a DAG B, if B contains directed edges (vi, vk) and (v j, vk), but not a directed 
edge between variables vi and v j . A singleton set {v} may be written as v , {v1, v2, . . . , vn} as v1 v2 · · · vn , and X ∪ Y as XY .

A Bayesian network (BN) [1] is a DAG B on U together with conditional probability tables (CPTs) P (v1|Pa(v1)),

P (v2|Pa(v2)), . . . , P (vn|Pa(vn)). For example, Fig. 1 (i) shows a BN, where CPTs P (a), P (b), . . . , P ( j|i) are not provided. 
We call B a BN, if no confusion arises. The product of the CPTs for B on U is a joint probability distribution P (U ) [1]. The 
conditional independence [1] of X and Z given Y holding in P (U ) is denoted I P (X, Y , Z), where X , Y , and Z are pairwise 
disjoint subset of U . It is known that if I(X, Y , Z) holds in B, then I P (X, Y , Z) holds in P (U ).

d-Separation [1] tests independencies in BNs and can be presented as follows [14]. Let X , Y , and Z be pairwise disjoint 
sets of variables in a BN B. We say X and Z are d-separated by Y , denoted I(X, Y , Z), if at least one variable on every 
undirected path from (any variable in) X to (any variable in) Z is closed. On a path, there are three kinds of variable v: 
(i) a sequential variable means v is a parent of one of its neighbours and a child of the other; (ii) a divergent variable is when 
v is a parent of both neighbours; and (iii) a convergent variable is when v is a child of both neighbours. A variable v is either 
open or closed. A sequential or divergent variable is closed, if v ∈ Y . A convergent variable is closed, if (v ∪ De(v)) ∩ Y = ∅. 
A path with a closed variable is blocked; otherwise, it is active.

Example 1. Let us test I(a, e, g) in the BN B of Fig. 1 (i) using d-separation. Here X = {a}, Y = {e}, and Z = {g}. The 
path (a, d), (d, b), (b, e), (e, g) from X to Z is blocked by closed convergent variable d, since d ∪ De(d) = {d, f , g, h} and 
{d, f , g, h} ∩ Y = ∅. On the contrary, the path (a, d), (d, g) from X to Z is active, since d is an open sequential variable. As 
there exists an active path from a to g , I(a, e, g) does not hold in B by d-separation.

Geiger et al. [10] were the first to provide a linear time complexity algorithm for implementing d-separation. Their 
method, however, always explores the entire DAG. Bayes-Ball [8] only explores the active part of the DAG. As will be dis-
cussed in Section 5, Bayes-Ball works using a hypothetical ball bouncing in a DAG and can be used for purposes outside 
the scope of our paper. Instead, we use the Reachable algorithm [9], since it also explores the active part of a DAG, but 
with d-separation terminology. To test I(X, Y , Z) in a BN B, Reachable takes X , Y , and B as input and returns the set of 
all variables reachable from X along active paths. For pedagogical purposes, Example 2 will mention active paths explicitly.
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