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The space of Bayesian network structures is prohibitively large and hence numerous 
techniques have been developed to prune this search space, but without eliminating 
the optimal structure. Such techniques are critical for structure learning to scale to 
larger datasets with more variables. Prior works exploited properties of the MDL score 
to prune away large regions of the search space that can be safely ignored by optimal 
structure learning algorithms. In this paper, we propose new techniques for pruning 
regions of the search space that can be safely ignored by algorithms that enumerate the 
k-best Bayesian network structures. Empirically, these techniques allow a state-of-the-art 
structure enumeration algorithm to scale to datasets with significantly more variables.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Learning the structure of a Bayesian network is a fundamental problem in artificial intelligence and machine learning. 
In particular, we seek a structure, a directed acyclic graph (DAG), that best explains a given dataset [9,14,15]. In practice, 
learning a single optimal DAG may not be sufficient, especially when the dataset has few examples and is otherwise noisy. 
Thus, we are interested in discovering other likely DAGs, and not just the best one.

Recently, a number of algorithms have been proposed to enumerate the k-most likely DAGs from a given dataset [22,8,4,
2,3]. For example, using dynamic programming, we can enumerate the 100-best networks for real-world datasets with 17 
variables [22]. Using heuristic search methods, we can enumerate the 1, 000-best networks for real-world datasets with 23 
variables, which is the current state-of-the-art [2]. In this paper, we show how to extend the reach of such systems further, 
allowing us to enumerate structures for datasets with 29 variables. Each of these advances is quite significant, when we 
consider how quickly the search space grows, as we increase the number of variables.1

More specifically, we propose techniques that can greatly reduce the search space of Bayesian network structures, by 
safely eliminating regions of the search space that do not contain any of the k-most likely DAGs. By exploiting properties 
of the popular MDL score for Bayesian networks, we identify an upper bound on the number of parents that a node can 
have, in any of the k-best structures. Any structure enumeration algorithm that can incorporate such a bound (including all 
of the aforementioned approaches) can benefit from the techniques that we propose. In fact, our bounds generalize those 
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1 For n variables, there are O (n! · 2
(n

2

)
) BN structures. More precisely, for n = 17, 23 and 29, there are 6.27 · 1052, 6.97 · 1094 and 2.51 · 10148 structures, 

respectively; for more on counting Bayesian network structures (and labeled DAGs), see https://oeis.org/A003024.
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proposed for the problem of learning a single optimal structure [19,21,10]. Such bounds are broadly used in the literature, 
and the scalability of modern structure learning algorithms depend critically on such bounds.

This paper is organized as follows. In Section 2, we review score-based structure learning and the MDL score. In Sec-
tion 3, we propose our techniques for pruning the search space for the purposes of enumerating the k-best Bayesian network 
structures. We evaluate our approach empirically in Section 4, and conclude in Section 5. Proofs are provided in the Ap-
pendix.

2. Technical preliminaries and related work

In this section, we first review the score-based structure learning of Bayesian networks, and the problem of enumerating 
the k-best structures. We then review the MDL score, and prior works that have exploited the MDL score to prune the 
search space of Bayesian network structures.

We use upper case letters (X) to denote variables and lower case letters (x) to denote their values. Variable sets are 
denoted by bold-face upper case letters (X) and their instantiations by bold-face lower case letters (x). We use |X | to 
denote the number of values of a discrete variable X , and |X| to denote the number of variables in a set X. Generally, we 
will use X to denote a variable in a Bayesian network and U to denote its parents. We refer to a variable X and its parents 
U as a family, which we denote by XU.

2.1. Score-based structure learning

Score-based approaches for learning the structure of a Bayesian network are based on searching for a DAG that minimizes 
a given scoring metric, which generally rates the quality of a DAG based (in part) on how well a given structure fits a given 
dataset D (which is typically complete). Structure scores often decompose into a sum of local scores, over the families XU
of the DAG:

score(G | D) =
∑
XU

score(XU | D). (1)

For example, MDL and BDeu scores are decomposable (note that we negate such scores as needed to obtain minimization 
problems). For more on score-based structure learning, see, e.g., [9,14,15].

2.2. Learning the k-best structures

In the problem of enumerating the k-best DAGs, we simply want to find k different DAGs whose scores are the smallest. 
Enumerating such DAGs can provide a number of insights about a dataset, beyond learning just a single best DAG. First, 
the single best DAG may be (Markov) equivalent to other equally good DAGs, or otherwise, there may be other DAGs with 
comparable scores. In either case, we would like to be aware of all such DAGs. Next, if the score that we use corresponds to 
the probability of a DAG given the data, then enumerating the k-best DAGs gives us a (truncated) view of the posterior over 
DAGs. If the aggregate probability of the k-best DAGs consumes most of the available probability, then we can further say 
that the remaining DAGs are unlikely to be relevant. By enumerating the k-best DAGs, we can also look for the structural 
features that are prominent in the most likely DAGs, as a more tractable approach to Bayesian model averaging; see, e.g., 
[22,4].

For a concrete example, consider Fig. 1 where we have enumerated all 25 DAGs learned from a dataset D over 3 vari-
ables: B , D and L. The dataset D was simulated from a known Bayesian network, and hence we know the ground-truth 
structure: B → D → L. First, each DAG has been ranked by its probability (using its normalized MDL score, which corre-
sponds to the BIC score). DAGs with the same rank and score are grouped together (in this case, each set corresponds to 
a Markov equivalence class). We note that the top set of two DAGs together have 66.28% probability, although there is a 
second set of three DAGs which are also relatively likely at 33.60% probability. The remaining 20 DAGs (including the ground 
truth DAG B → D → L) are relatively unlikely, given the dataset D. Note that our dataset D is relatively small in this case, 
with only 100 examples. In Fig. 2, we enumerated all DAGs from a dataset D over 1,000 examples. Here, the ground-truth 
DAG is now among the 3 most likely DAGs, which together have 98.01% probability. In Fig. 1, there is a 99.9990% proba-
bility that there is an edge connecting variables D and L; in Fig. 2, the probability that there is no such edge is essentially 
negligible.

One of the first approaches for enumerating the k-best DAGs was based on dynamic programming (DP) [22], and was an 
extension of a DP-based approach for learning a single optimal DAG [13,17,16]. Another approach encodes the enumeration 
problem as a series of integer linear programming (ILP) problems [8]. The first ILP problem encodes the problem of finding 
a single optimal DAG [12,6,8]. This solution is then eliminated by adding a constraint to the ILP problem. The solution of 
the new ILP problem gives us the second best DAG. We repeat this process until each of the k-best DAGs is enumerated.

The current state-of-the-art for enumerating the k-best DAGs is based on heuristic search methods such as A*, which 
was previously observed to be orders-of-magnitude more efficient than the above approaches based on DP and ILP [2]. It 
is based on navigating a seemingly intractable search space over all DAGs. The complexity of this search can be mitigated, 
however, by exploiting an oracle that can find a single optimal DAG. This search space, called the BN graph, can also be 
used to learn Bayesian network structures with non-decomposable priors and constraints [2].
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