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In this paper we propose a procedure to study the asymmetric dependence of the 
multivariate data. The proposed procedure comprises methodologies that have not been 
considered in the analysis of multivariate asymmetric dependence. We first utilize the 
asymmetric multivariate copula-based regression to capture the asymmetric dependence 
among multiple variables. We then introduce the multiple asymmetric dependence 
measure to quantify the asymmetry in the predictive power of the tentative predictors 
for a tentative response variable. We demonstrate the proposed methods using a class of 
asymmetric multivariate skew normal copulas. An application example on the asymmetric 
comovements of financial assets illustrates the benefits of the proposed methods.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

There is a great need for modeling asymmetric dependence structure in various research contexts such as finances [3,
5,20,54,56], gene networks [29], developmental research on attention deficit hyperactivity disorder [36] and aggression in 
adolescence [50]. By asymmetric dependence, we mean that the associations/interactions are not always identical among all 
variables involved and thus the variables influence each other with different magnitude.

Modeling dependence with the copulas and the copula-based regression has recently drawn attention in literature [9,14,
19,28,29,43,45,46,53]. The asymmetric (non-exchangeable/radial asymmetric) copulas are flexible in describing asymmetric 
dependence stemming from the joint behavior of the variables separated from their marginal behaviors. The regression 
approach enables quantification of the degree of asymmetric dependence captured by asymmetric copulas. However, the 
main limitation of the previous researches is their focus on the bivariate and/or symmetric case.

Considerable efforts have been put into developing multivariate copulas describing asymmetric dependence structures. 
The hierarchical Archimedean copulas [33], constructed from the idea of the compositions of simple Archimedean copulas, 
is designed for non-exchangeable dependency structures. The vine copulas [2,6,21,44] decompose a multivariate distribution 
into a product of conditional bivariate copulas and determine the dependence structure by a cascade of bivariate copulas. 
The Liouville copulas [34] are proposed as a non-exchangeable generalization of the Archimedean copulas. The class of 
multivariate skew normal copulas, derived from the multivariate skew normal distribution [4], has two sets of parameters 
capturing asymmetric dependence in the data [51].
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In this paper we propose a procedure to study the asymmetric dependence of the multivariate data. The proposed 
procedure utilizes methodologies that have not been considered in the analysis of multivariate asymmetric dependence. 
Our contribution is twofold: First, we propose using a flexible class of multivariate skew normal copula-based regression 
to capture the asymmetric dependence in the multivariate data. Second, we propose a measure of multivariate asymmetric 
dependence designed to take account of the asymmetry in the predictive power of a set of tentative predictors for a tentative 
response variable. The proposed measure, extending the results of the generalized measures of correlation in [57] from a 
bivariate case to a multivariate case, is the first such for evaluating the asymmetric/nonlinear dependence among multiple 
variables via the copula-based regression.

The rest of the article is structured as follows. Section 2 briefly reviews a class of multivariate skew normal copulas 
proposed in [51] and discusses its asymmetry properties (non-exchangeability and radial asymmetry). Section 3 proposes the 
multivariate skew normal copula-based regression and its semiparametric estimation. In Section 4, we propose a measure of 
multivariate asymmetric dependence to quantify the degree of asymmetric dependence captured by copula-based regression 
and investigate its theoretical properties. We also discuss the estimation of the proposed measure. Section 6 illustrates the 
proposed methods with a real data example on the asymmetric comovements of financial assets. We end this article with a 
discussion in Section 6.

2. Multivariate skew normal copula

In this section, we briefly review the definition of multivariate copulas, its symmetry properties (exchangeability and 
radial symmetry) and the multivariate skew normal copulas proposed in [51]. For a detailed overview of copula theory, see 
[13,23].

2.1. Review on multivariate copula

Denote X = (X0, X1, . . . , Xk)
� on Rk+1 be a (k + 1)-dimensional random vector with the joint cumulative distribution 

function (CDF) H(x) = P (X0 ≤ x0, X1 ≤ x1, . . . , Xk ≤ xk) and marginal CDFs Fi(xi), i = 0, 1, . . . , k. For the random vector X
with continuous margins Fi(xi), the Sklar’s theorem [42] states that there exists a unique copula C such that

H(x) = C(F0(x0), F1(x1), . . . , Fk(xk)), (2.1)

where C is a multivariate distribution function with uniform marginal distributions, that is, the function from [0, 1]k+1 to 
[0, 1] defined by

C(u) ≡ P (U0 ≤ u0, U1 ≤ u1, . . . , Uk ≤ uk) (2.2)

= H(F −1
0 (u0), F −1

1 (u1), . . . , F −1
k (uk)),

U = (U0, U1, . . . , Uk)
� with Ui = Fi(Xi), and F −1

i (ui) = inf{x : Fi(x) ≥ ui} for i = 0, 1, . . . , k. Note that a copula C in Eq. (2.2)
allows us to separate the multivariate dependence between multiple variables from the univariate marginal distributions, 
and it contains information about the dependence structure of H(x) on a quantile scale.

For an absolutely continuous copula C , the copula density is defined as

c(u) = ∂k+1C(u0, u1, . . . , uk)

∂u0∂u1 · · · ∂uk
= h(F −1

0 (u0), F −1
1 (u1), . . . , F −1

k (uk))

f0(F −1
0 (u0)) f1(F −1

1 (u1)) . . . fk(F −1
k (uk))

,

where h(x) is the joint density of X and f i(xi) are the marginal density of Xi .
The exchangeability and the radial symmetry are two types of symmetry commonly imposed on the copula. The defini-

tions of exchangeable and radially symmetric copulas are given below:

Definition 2.1. A (k + 1)-copula C is exchangeable if it is the distribution function of a (k + 1)-dimensional exchangeable 
uniform random vector U = (U0, U1, . . . , Uk)

� satisfying C(u0, u1, . . . , uk) = C(uσ(0), uσ(1), . . . , uσ(k)) for all σ ∈ �, where �
denotes the set of all permutations on the set {0, 1, . . . , k}.

Note that a (k + 1)-dimensional continuous random vector X is exchangeable if and only if the marginal CDFs are 
identical and the copula C is exchangeable.

Definition 2.2. A (k + 1)-copula C is radially symmetric if U has the same distribution as the random vector 1 − U where 
1 − U = (1 − U0, . . . , 1 − Uk)

� .

Note that a (k +1)-dimensional random vector X is radially symmetric about a = (a0, . . . , ak) if and only if Xi is marginal 
radially symmetric about ai (i.e., the distribution functions of Xi − ai and Xi + ai are same) and the corresponding copula is 
radially symmetric.
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