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Markov networks are extensively used to model complex sequential, spatial, and relational 
interactions in a wide range of fields. By learning the Markov network independence 
structure of a domain, more accurate joint probability distributions can be obtained for 
inference tasks or, more directly, for interpreting the most significant relations among 
the variables. Recently, several researchers have investigated techniques for automatically 
learning the structure from data by obtaining the probabilistic maximum-a-posteriori 
structure given the available data. However, all the approximations proposed decompose 
the posterior of the whole structure into local sub-problems, by assuming that the 
posteriors of the Markov blankets of all the variables are mutually independent. In this 
work, we propose a scoring function for relaxing such assumption. The Blankets Joint 
Posterior score computes the joint posterior of structures as a joint distribution of the 
collection of its Markov blankets. Essentially, the whole posterior is obtained by computing 
the posterior of the blanket of each variable as a conditional distribution that takes into 
account information from other blankets in the network. We show in our experimental 
results that the proposed approximation can improve the sample complexity of state-of-
the-art competitors when learning complex networks, where the independence assumption 
between blanket variables is clearly incorrect.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A Markov network (MN) is a popular probabilistic graphical model that efficiently encodes the joint probability distribu-
tion for a set of random variables of a specific domain [1–3]. MNs usually represent probability distributions by using two 
interdependent components: an independence structure, and a set of numerical parameters over the structure. The first is a 
qualitative component that represents structural information about a problem domain in the form of conditional indepen-
dence relationships between variables. The numerical parameters are a quantitative component that represents the strength 
of the dependences in the structure. There is a large list of applications of MNs in a wide range of fields, such as computer 
vision and image analysis [4–6], computational biology [7], biomedicine [8,9], and evolutionary computation [10,11], among 
many others. For some of these applications, the model can be constructed manually by human experts, but in many other 
problems this can become unfeasible, mainly due to the dimensionality of the problem.
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Learning the model from data consists of two interdependent problems: learning the structure; and given the structure, 
learning its parameters. This work focuses on the task of learning the structure, which is useful for a variety of tasks. The 
structures learned may be used to construct accurate models for inference tasks (such as the estimation of marginal and 
conditional probabilities) [12–14], and may also be interesting per se, since they can be used as interpretable models that 
show the most significant interactions of a domain [15–19]. The first scenario is known in practice as the density estimation 
goal of learning, and the second one is known as the knowledge discovery goal of learning [Chapter 16 [3]].

An interesting approach to MN structure learning is to use constraint-based (also known as independence-based) algo-
rithms [20–23]. Such algorithms proceed by performing statistical independence tests on data, and discard all structures 
inconsistent with the tests. This is an efficient approach, and it is correct under the assumption that the distribution can be 
represented by a graph, and that the tests are reliable. However, the algorithms that follow this approach are quite sensitive 
to errors in the tests, which may be unreliable for large conditioning sets [20,3]. A second approach to MN structure learn-
ing is to use score-based algorithms [24,25,15,26]. Such algorithms formulate the problem as an optimization, combining 
a strategy for searching through the space of possible structures with a scoring function that measures the fitness of each 
structure to the data. The structure learned is the one that achieves the highest score in the search.

It is important to mention that both constraint-based and score-based approaches have been originally motivated by 
distinct learning goals. According to the existing literature [3], constraint-based methods are generally designed for the 
knowledge-discovery goal of learning [22,21], and their quality is often measured in terms of the correctness of the structure 
learned (structural errors). In contrast, most score-based approaches have been designed for the density estimation goal of 
learning [12–14], and they are in general evaluated in terms of inference accuracy. For this reason, score-based algorithms 
often work by considering the whole MN at once during the search, interleaving the parameter learning step. This makes 
them more accurate for inference tasks. However, since learning the parameters is known to be NP-hard for MNs [27], it 
has a negative effect on their scalability.

Recently, there has been a surge of interest towards efficient methods based on a strategy that follows a score-based 
approach, but with the knowledge discovery goal in mind. Basically, an undirected graph structure is learned by obtaining 
the probabilistic maximum-a-posteriori structure given the available data [28,19,29]. This hybrid strategy achieves scalability, 
as well as reliable performance. Such contributions consist in the design of efficient scoring functions for MN structures, 
expressing the problem formally as follows: given a complete training data set D , find an undirected graph G� such that

G� = arg max
G∈G Pr(G|D), (1)

where Pr(G|D) is the posterior probability of a structure given D , and G is the family of all the possible undirected graphs 
for the domain size. This class of algorithms has been shown to outperform constraint-based algorithms in the quality of the 
learned structures, with competitive computational complexities. The method proposed in this paper follows this approach.

Since there are no feasible exact methods for computing the posterior of MN structures, different approximations have 
been proposed. An important assumption commonly made by the current state-of-the-art methods is to suppose that the 
posterior of the structure is decomposable [30,31,3,28,19,29]. It means that the whole posterior can be computed as a 
product of the posteriors of the Markov blankets that compose the structure, which are smaller posteriors that can be 
computed independently. In fact, this is a good approximation that improves the efficiency of search. The research line of 
this work aims at designing a better approximation of the posterior, by relaxing this independence assumption. This work’s 
contribution is the Blankets Joint Posterior (BJP), a scoring function that estimates Pr(G|D) as the joint posterior probability of 
the Markov blankets of G . This is achieved by formulating Pr(G|D) in a novel way that relaxes the independence assumption 
between the blankets. Essentially, the whole posterior is obtained by computing the posterior of the blanket of each variable 
as a conditional distribution that takes into account information from other blankets in the network. In our experiments 
we show that the proposed approximation can improve the sample complexity of state-of-the-art scores when learning 
networks with complex topologies, that commonly appear in real-world problems.

After providing some preliminaries, notations and definitions in Section 2, we introduce the BJP scoring function in 
Section 3. Section 4 presents the experimental results for several study cases. Finally, Section 5 summarizes this work, and 
poses several possible directions of future work.

2. Background

We begin by introducing the notation used for MNs. Then we provide some additional background about these models 
and the problem of learning their independence structure, and also discuss the state-of-the-art of MN structure learning.

2.1. Markov networks

Let V be a finite set of indexes, with lowercase subscripts for denoting particular indexes, e.g., i, j ∈ V , and uppercase 
subscripts for subsets of indexes, e.g., W ⊆ V . Let XV be the set of random variables of a domain, denoting single variables 
as single indexes in V , e.g., Xi, X j ∈ XV where i, j ∈ V . For a MN representing a probability distribution P (XV ), its two 
components are denoted as follows: G , and θ . G is the structure, an undirected graph G = (V , E) where the nodes V =
{0, ..., n − 1} are the indices of each random variable Xi of the domain, and E ⊆ {V × V } is the edge set of the graph. 
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