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Starting with Dempster’s seminal work, several approaches to statistical inference based 
on belief functions have been proposed. Some of these approaches can be seen as 
implementing some form of prior-free Bayesian inference, while some others put the 
emphasis on long-run frequency properties and are more related to classical frequentist 
methods. This paper focusses on the latter class of techniques, which have been developed 
independently and had not been put in perspective until now. Existing definitions for 
frequency-calibrated belief functions as well as corresponding construction methods are 
reviewed, and some new notions and techniques are introduced. The connections with 
other frequentist notions such as confidence distributions and confidence curves are 
also explored. The different construction techniques are illustrated on simple inference 
problems, with a focus on interpretation and implementation issues.

© 2017 Published by Elsevier Inc.

1. Introduction

The theory of belief functions, or Dempster–Shafer (DS) theory [1–3], is a general framework for reasoning under uncer-
tainty. Its success in applications [4,5] owes much to its flexibility and its ability to represent and combine elementary items 
of evidence in a wide range of problems. The validity and cogency of the inferences and decisions performed within this 
theory thus crucially depend on the validity of the operational methods used for expressing uncertain and partial evidence 
in the formalism of belief functions.

The first category of problems to which belief functions have been applied is parametric statistical inference. Dempster’s 
approach [6,7] extends Fisher’s fiducial inference by making use of a structural equation X = ϕ(θ, U ), which relates the ob-
servable data X , an unknown parameter θ ∈ � and an auxiliary random variable U with known distribution. After observing 
X = x, the random set �(U , x) = {θ ∈ � | x = ϕ(θ, U )} defines a belief function on �. Although conceptually simple and el-
egant, this method leads to intricate computations for most but very simple inference problems. An alternative approach, 
introduced by Shafer [2], is based on the construction of a consonant belief function directly from the likelihood function. 
This approach, in line with likelihood inference [8–10], is much easier to implement than Dempster’s method [11–13] and 
it can be justified from basic axiomatic requirements [14,15]. Both Dempster’s method and the likelihood-based approach 
are compatible with Bayesian inference, in the sense that combining the data-conditional belief function with a prior prob-
ability distribution using Dempster’s rule of combination [1,2] yields the Bayesian posterior distribution. These methods can 
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Table 1
Summary of the different definitions of frequency-calibrated belief functions.

Estimation Prediction

100(1 − α)% confidence 
belief function

Ref. This paper
Def. ∀θ , PX |θ

(
plθ |X (θ) = 1

)≥ 1 − α
Ref. [16] [17]
Def. ∀θ ∈ �,

PX |θ
(

BelY |X (A) ≤ PY |X,θ (A), ∀A ∈BY
)≥ 1 − α

Confidence structure Ref. [20][21]
Def. Belθ |x(H) = PU (�(U , x) ⊆ H), with �(U , X)

such that ∀θ , ∀A ∈BU ,

PX |θ

{
θ ∈

⋃
u∈A

�(u, X)

}
≥ PU (A)

Ref. This paper
Def. BelY |x(B) = PU (�(U , x) ⊆ B), with �(U , X)

such that ∀θ , ∀A ∈BU ,

PX,Y |θ

{
Y ∈

⋃
u∈A

�(u, X)

}
≥ PU (A)

Valid belief function Ref. [22,23,18,19]
Def. ∀α ∈ (0, 1), ∀θ ,

PX |θ
{

plθ |X (θ) ≤ α
}≤ α

Ref. [24], [19, Chapter 9]
Def. ∀α ∈ (0, 1), ∀θ ∈ �,

PX,Y |θ
{

plY |X (Y ) ≤ α
}≤ α

thus be seen as implementing a form of prior-free generalization of Bayesian inference. They lack, however, the frequency 
calibration properties expected by many statisticians.

In recent years, several attempts have been made to blend belief function inference with frequentist ideas. In [16,17], the 
first author proposed a notion of predictive belief function, which under repeated sampling is less committed than the true 
probability distribution of interest with some prescribed probability. Using different ideas, Liu and Martin developed the 
Inferential Model (IM) approach, which can be seen as a modification of Dempster’s model that produces credible, or valid
belief functions with well defined frequentist properties [18,19]. Yet another notion is the theory of Confidence Structures 
proposed by Balch [20,21] as an extension of confidence distributions. The common idea underlying these three distinct 
approaches is to constrain degrees of belief to meet some properties in a repeated sampling framework. Each of them 
allows one to construct a different kind of “frequency-calibrated” belief function, i.e., a belief function based on observed 
data, which assigns degrees of belief to which a frequentist meaning can be attached. These approaches seem to have been 
developed independently and they have not been compared from a conceptual or practical point of view. The objective 
of this paper is to fill this gap by reviewing the different notions of frequency-calibrated belief functions, relating them 
to statistical notions developed in other contexts such as confidence distributions or confidence curves, and describing 
some simple procedures (including some original ones) for generating such belief functions in realistic statistical inference 
situations. We also introduce some new notions, namely: the extension of predictive belief functions at a given confidence 
level to estimation, and the extension of confidence structures to prediction. These new notions allow us to provide the 
global picture shown in Table 1, in which three different principles are applied both to estimation and to prediction. The 
rest of this paper will be devoted to detailed explanation and in-depth discussion of the notions summarized in this table. 
The emphasis will be on underlying principles, with the objective of bringing recent results and ideas to the attention of a 
large audience of researchers interested in belief functions. Accordingly, technicalities will be avoided by considering only 
simple statistical models and inference problems.

We will assume that the reader already has some familiarity with the theory of belief functions. A concise exposition 
of the main relevant notions can be found in [25], for instance. The three approaches mentioned will then be described 
sequentially. Section 2 will be devoted to the frequentist notion of predictive belief functions introduced in [16]. Confi-
dence Structures and valid belief functions will then be reviewed, respectively, in Section 3 and 4. A summary and some 
conclusions will be provided in Section 5.

Notations and terminology. Before entering into the description of different notions and methods related to frequency-
calibrated belief functions, let us first clarify the notations and terminology. Throughout this paper, we will denote by x
the observed data, assumed to be a realization of a random vector X with sample space �X . The σ -algebra BX on �X will 
be the power set when �X is finite, and the Borel σ -algebra on �X when �X =R

n . In general, random variables and their 
realizations will be denoted by uppercase and lowercase letters, respectively. We will consider a parametric model X ∼ PX |θ , 
where θ ∈ � is a fixed but unknown parameter. An estimative belief function Belθ |x is a data-conditional belief function on 
�, defined after observing the data x. It basically encodes statistical evidence about θ . Given a measurable subset H ⊂ �, 
the quantity Belθ |x(H) is interpreted as one’s degree of belief in the proposition θ ∈ H , based on the evidence X = x. It is a 
function h(x) of x. The notation Belθ |X (H) stands for the random variable h(X).

As opposed to estimation, prediction is concerned with the determination of a random quantity. Typically, we have a pair 
of random variables (X, Y ), where X is the (past) observed data and Y is the (future) not-yet observed data taking values 
in the probability space (�Y , BY ). As before, BY will be 2�Y in the finite case and the Borel σ -algebra in the continuous 
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