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In this study, we present the concept of quadratic copula constructions using two arbitrary 
copulas. We characterize all quadratic polynomials of four variables whose composition 
with any two copulas always results in a copula. We show that these polynomials form a 
compact convex set in a seven-dimensional vector space. We also apply the result to obtain 
a new family of copulas.

© 2017 Published by Elsevier Inc.

1. Introduction and preliminaries

A (bivariate) copula can be viewed as a joint distribution of two random variables uniformly distributed on the unit 
interval I = [0, 1]. Equivalently, a copula is a function C : I2 → I satisfied the following conditions.

(G) C(0, u) = 0 = C(u, 0) for all u ∈ I.
(U) C(1, u) = u = C(u, 1) for all u ∈ I.
(2I) V C ([u1, u2] × [v1, v2]) ≥ 0 for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1 where

V C ([u1, u2] × [v1, v2]) = C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) (1.1)

is the C-volume of the rectangle [u1, u2] × [v1, v2].

Denote the set of all copulas by C . Examples of well-known copulas are

W (u, v) = max(0, u + v − 1),

�(u, v) = uv, and

M(u, v) = min(u, v)

which are called the Frechet–Hoeffding lower bound, the product copula, and the Frechet–Hoeffding upper bound, respectively. 
Note that for every copula C ,
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W (u, v) ≤ C(u, v) ≤ M(u, v) (1.2)

for all u, v ∈ I. Moreover, a function C : I2 → I is a copula if and only if it satisfies equation (1.2) and (2I).
Another class of copulas crucial for this work is the shuffle of min, a copula C is an m × m (straight) shuffle of min by a 

bijection j on {0,1, . . . ,m − 1} if V C

([
i

m , u
]
×

[
j(i)
m , v

])
= min

(
u − i

m , v − j(i)
m

)
for any u ∈

[
i

m , i+1
m

]
, v ∈

[
j(i)
m ,

j(i)+1
m

]
and 

i = 0, . . . , m − 1. This implies V C

([
i

m , i+1
m

]
×

[
j

m ,
j+1
m

])
= 0 whenever j �= j(i) and also an m × m shuffle of min is a k × k

shuffle of min whenever m divides k. Note that the set of shuffles of min is dense in the set of copulas C under uniform 
convergence [1].

Since the concept of copulas was introduced in 1959, many copula families have been introduced including ones obtained 
by transformations of copulas. The simplest example is probably the copula transpose defined by

τt(C)(u, v) = C(v, u)

for all u, v ∈ I. Then τt(C) is a copula whenever C is, that is, τt is a function on C . Other simple transformations based on 
the symmetry of uniform distribution are τu and τv defined by

τu(C)(u, v) = u − C(u,1 − v), and

τv(C)(u, v) = v − C(1 − u, v)

for all u, v ∈ I and C ∈ C . Multivariate transformations of copulas also exists. For example, the convex combinations 
κt(C, D) = tC + (1 − t)D of copulas C and D are copulas for all t ∈ I. Others include ordinal sums and patchwork cop-
ulas [2–9].

In 2015, Kolesárová et al. [10] characterizes all transformations of the form ξP (C)(u, v) = P (u, v, C(u, v)) where P is a 
quadratic polynomial. They show that ξP is a copula transformation if and only if P can be written as

P (u, v, w) = auv + (1 + b − a)w − buw − bv w + bw2 (1.3)

where both a ∈ I and a − b ∈ I. It is natural to ask whether multivariate versions of this type of transformations exist 
and if they do, whether we can characterize them. In this work, we provide an answer for the bivariate version, that is, we 
characterizes all quadratic polynomial P = P (u, v, w1, w2) such that ζP defined by ζP (C, D)(u, v) = P (u, v, C(u, v), D(u, v))

is a function from C × C to C . It turns out that characterizing them is quite challenging since the class of ζP actually form a 
seven-dimensional convex set with its boundary consists of 24 hyperplane sections. We have to rely on symmetry method 
to reduce the number of variables. However, we are unable to classify all of its extreme points. It is also interesting whether 
this approach can be extended to the multivariate version.

In the next section, we provide the statement of the main result of this work follows by some examples. The proof of 
this main result will be, however, postponed until section 3.

2. Main results

Since the linear transformation (w1, w2) �→
( 1

2 (w1 + w2),
1
2 (w1 − w2)

)
is invertible, any quadratic polynomial can be 

written as a quadratic function of u, v, 12 (w1 + w2), 12 (w1 − w2) instead of u, v, w1, w2. Thus, we will characterize all 
quadratic polynomials P such that ζP defined by

ζP (C, D)(u, v) = P

(
u, v,

1

2
(C(u, v) + D(u, v)) ,

1

2
(C(u, v) − D(u, v))

)
(2.1)

is a bivariate copula transformation. It is clear that this characterization is equivalent to the original formulation of the 
problem. In fact, we will show in section 3 that such P = P (u, v, z1, z2) must be in the form

P (u, v, z1, z2) = (1 − a)uv + bz1 + (a − b)z1 (u + v − z1)

+ cz2 + dz2
2 + ez1z2 + ( f u + gv)z2

(2.2)

where a, b ∈ I and c, d, e, f , g ∈ R are constants satisfying the following conditions.

(A1) −2 + a + b ≤ f ≤ 2 − a − b and a + b − 2 ≤ g ≤ 2 − a − b
(A2) −b ≤ c ≤ b
(A3) −a − b − d ≤ 2c + e + f + g ≤ a + b + d
(A4) −2 + a + b + d ≤ f − g ≤ 2 − a − b − d
(A5) −2 + a + b ≤ e + f ≤ 2 − a − b and a + b − 2 ≤ e + g ≤ 2 − a − b
(A6) −2 + a + b − d ≤ e + f + g ≤ 2 − a − b + d
(A7) −a ≤ c + f ≤ a and −a ≤ c + g ≤ a
(A8) −b ≤ c + e + f + g ≤ b
(A9) −a − b + d ≤ 2c + f + g ≤ a + b − d
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